Este artículo se tradujo automáticamente. Para ver el artículo en inglés, active la casilla Inglés. Además, puede mostrar el texto en inglés en una ventana emergente si mueve el puntero del mouse sobre el texto. Traducción Inglés

# Campo Double.Epsilon

.NET Framework (current version)

Publicado: octubre de 2016

Representa el menor valor Double positivo mayor que cero. Este campo es constante.

Espacio de nombres:   System
Ensamblado:  mscorlib (en mscorlib.dll)

## Sintaxis

```public const double Epsilon
```

#### Valor de campo

Type: System.Double

## Comentarios

The value of the F:System.Double.Epsilon property reflects the smallest positive T:System.Double value that is significant in numeric operations or comparisons when the value of the T:System.Double instance is zero. For example, the following code shows that zero and F:System.Double.Epsilon are considered to be unequal values, whereas zero and half the value of F:System.Double.Epsilon are considered to be equal.

```using System;

public class Example
{
public static void Main()
{
double[] values = { 0, Double.Epsilon, Double.Epsilon * .5 };

for (int ctr = 0; ctr <= values.Length - 2; ctr++)
{
for (int ctr2 = ctr + 1; ctr2 <= values.Length - 1; ctr2++)
{
Console.WriteLine("{0:r} = {1:r}: {2}",
values[ctr], values[ctr2],
values[ctr].Equals(values[ctr2]));
}
Console.WriteLine();
}
}
}
// The example displays the following output:
//       0 = 4.94065645841247E-324: False
//       0 = 0: True
//
//       4.94065645841247E-324 = 0: False
```

More precisely, the floating point format consists of a sign, a 52-bit mantissa or significand, and an 11-bit exponent. As the following example shows, zero has an exponent of -1022 and a mantissa of 0. F:System.Double.Epsilon has an exponent of -1022 and a mantissa of 1. This means that F:System.Double.Epsilon is the smallest positive T:System.Double value greater than zero and represents the smallest possible value and the smallest possible increment for a T:System.Double whose exponent is -1022.

```using System;

public class Example
{
public static void Main()
{
double[] values = { 0.0, Double.Epsilon };
foreach (var value in values) {
Console.WriteLine(GetComponentParts(value));
Console.WriteLine();
}
}

private static string GetComponentParts(double value)
{
string result = String.Format("{0:R}: ", value);
int indent = result.Length;

// Convert the double to an 8-byte array.
byte[] bytes = BitConverter.GetBytes(value);
// Get the sign bit (byte 7, bit 7).
result += String.Format("Sign: {0}\n",
(bytes[7] & 0x80) == 0x80 ? "1 (-)" : "0 (+)");

// Get the exponent (byte 6 bits 4-7 to byte 7, bits 0-6)
int exponent = (bytes[7] & 0x07F) << 4;
exponent = exponent | ((bytes[6] & 0xF0) >> 4);
int adjustment = exponent != 0 ? 1023 : 1022;
result += String.Format("{0}Exponent: 0x{1:X4} ({1})\n", new String(' ', indent), exponent - adjustment);

// Get the significand (bits 0-51)
long significand = ((bytes[6] & 0x0F) << 48);
significand = significand | ((long) bytes[5] << 40);
significand = significand | ((long) bytes[4] << 32);
significand = significand | ((long) bytes[3] << 24);
significand = significand | ((long) bytes[2] << 16);
significand = significand | ((long) bytes[1] << 8);
significand = significand | bytes[0];
result += String.Format("{0}Mantissa: 0x{1:X13}\n", new String(' ', indent), significand);

return result;
}
}
//       // The example displays the following output:
//       0: Sign: 0 (+)
//          Exponent: 0xFFFFFC02 (-1022)
//          Mantissa: 0x0000000000000
//
//
//       4.94065645841247E-324: Sign: 0 (+)
//                              Exponent: 0xFFFFFC02 (-1022)
//                              Mantissa: 0x0000000000001
```

However, the F:System.Double.Epsilon property is not a general measure of precision of the T:System.Double type; it applies only to T:System.Double instances that have a value of zero or an exponent of -1022.

Nota

The value of the F:System.Double.Epsilon property is not equivalent to machine epsilon, which represents the upper bound of the relative error due to rounding in floating-point arithmetic.

The value of this constant is 4.94065645841247e-324.

Two apparently equivalent floating-point numbers might not compare equal because of differences in their least significant digits. For example, the C# expression, (double)1/3 == (double)0.33333, does not compare equal because the division operation on the left side has maximum precision while the constant on the right side is precise only to the specified digits. If you create a custom algorithm that determines whether two floating-point numbers can be considered equal, we do not recommend that you base your algorithm on the value of the F:System.Double.Epsilon constant to establish the acceptable absolute margin of difference for the two values to be considered equal. (Typically, that margin of difference is many times greater than F:System.Double.Epsilon.) For information about comparing two double-precision floating-point values, see T:System.Double and M:System.Double.Equals(System.Double).

### Platform Notes

On ARM systems, the value of the F:System.Double.Epsilon constant is too small to be detected, so it equates to zero. You can define an alternative epsilon value that equals 2.2250738585072014E-308 instead.

## Información de versión

Plataforma universal de Windows
Disponible desde 8
.NET Framework
Disponible desde 1.1
Biblioteca de clases portable
Se admite en: plataformas portátiles de .NET
Silverlight
Disponible desde 2.0
Windows Phone Silverlight
Disponible desde 7.0
Windows Phone
Disponible desde 8.1

## Ver también

Volver al principio
Mostrar: