Exportar (0) Imprimir
Expandir todo

E/S de archivos asincrónica

Actualización: noviembre 2007

La E/S sincrónica quiere decir que el método está bloqueado hasta que termina la operación de E/S y, a continuación, el método devuelve sus datos. Con E/S asincrónica, un usuario puede llamar a BeginRead. El subproceso principal puede continuar realizando otro trabajo y, posteriormente, el usuario podrá procesar los datos. Además, puede haber varias solicitudes de E/S pendientes simultáneamente.

Para que se le informe cuando estén disponibles estos datos, puede llamar a EndRead o a EndWrite que se pasan en el IAsyncResult correspondiente a la solicitud de E/S emitida. También se puede proporcionar un método de devolución de llamada que debe llamar a EndRead o a EndWrite para averiguar cuántos bytes se han leído o escrito. La E/S asincrónica puede ofrecer mejor rendimiento si hay muchas solicitudes de E/S pendientes a la vez, pero normalmente requiere una reestructuración a fondo de la aplicación para funcionar correctamente.

La clase Stream admite la combinación de lecturas y escrituras sincrónicas y asincrónicas en la misma secuencia, independientemente de si el sistema operativo lo permite. Stream proporciona implementaciones predeterminadas de operaciones de lectura y escritura asincrónicas por lo que respecta a sus implementaciones sincrónicas y proporciona las implementaciones predeterminadas de operaciones de lectura y escritura sincrónicas respecto a sus implementaciones asincrónicas.

Al implementar una clase derivada de Stream, es necesario proporcionar una implementación de la versión sincrónica o asincrónica de los métodos Read y Write. Aunque está permitido reemplazar Read y Write, y las implementaciones predeterminadas de los métodos asincrónicos (BeginRead, EndRead, BeginWrite y EndWrite) funcionarán correctamente con la implementación de los métodos sincrónicos, esta operación no proporcionará el rendimiento más eficaz. De igual forma, los métodos sincrónicos Read y Write funcionan correctamente si se proporciona una implementación de los métodos asincrónicos, pero normalmente el rendimiento es mejor si se implementan los métodos sincrónicos. Las implementaciones predeterminadas de ReadByte y WriteByte llaman a los métodos Read y Write sincrónicos con una matriz de bytes de un elemento. Al derivar clases de Stream, si se dispone de un búfer de bytes interno, se recomienda especialmente reemplazar estos métodos de acceso al búfer interno y obtener así una mejora en el rendimiento.

Una secuencia que se conecta a un almacén de respaldo reemplaza los métodos sincrónicos o asincrónicos Read y Write para obtener la funcionalidad del otro de forma predeterminada. Si una secuencia no admite las operaciones sincrónicas o asincrónicas, el implementador sólo tiene que hacer que los métodos adecuados produzcan excepciones.

El ejemplo siguiente es una implementación asincrónica de un hipotético procesador masivo de imágenes; a continuación se ofrece un ejemplo de implementación sincrónica. Este código se ha diseñado para realizar una operación de gran consumo en la CPU en todos los archivos de un directorio. Para obtener más información, vea el tema Modelos de diseño para la programación asincrónica.

using System;
using System.IO;
using System.Threading;
using System.Runtime.InteropServices;
using System.Runtime.Remoting.Messaging;
using System.Security.Permissions;

public class BulkImageProcAsync
{
    public const String ImageBaseName = "tmpImage-";
    public const int numImages = 200;
    public const int numPixels = 512 * 512;

    // ProcessImage has a simple O(N) loop, and you can vary the number
    // of times you repeat that loop to make the application more CPU-
    // bound or more IO-bound.
    public static int processImageRepeats = 20;

    // Threads must decrement NumImagesToFinish, and protect
    // their access to it through a mutex.
    public static int NumImagesToFinish = numImages;
    public static Object[] NumImagesMutex = new Object[0];
    // WaitObject is signalled when all image processing is done.
    public static Object[] WaitObject = new Object[0];
    public class ImageStateObject
    {
        public byte[] pixels;
        public int imageNum;
        public FileStream fs;
    }

    [SecurityPermissionAttribute(SecurityAction.Demand, Flags=SecurityPermissionFlag.UnmanagedCode)]
    public static void MakeImageFiles()
    {
        int sides = (int)Math.Sqrt(numPixels);
        Console.Write("Making {0} {1}x{1} images... ", numImages,
            sides);
        byte[] pixels = new byte[numPixels];
        int i;
        for (i = 0; i < numPixels; i++)
            pixels[i] = (byte)i;
        FileStream fs;
        for (i = 0; i < numImages; i++)
        {
            fs = new FileStream(ImageBaseName + i + ".tmp",
                FileMode.Create, FileAccess.Write, FileShare.None,
                8192, false);
            fs.Write(pixels, 0, pixels.Length);
            FlushFileBuffers(fs.SafeFileHandle.DangerousGetHandle());
            fs.Close();
        }
        fs = null;
        Console.WriteLine("Done.");
    }

    public static void ReadInImageCallback(IAsyncResult asyncResult)
    {
        ImageStateObject state = (ImageStateObject)asyncResult.AsyncState;
        Stream stream = state.fs;
        int bytesRead = stream.EndRead(asyncResult);
        if (bytesRead != numPixels)
            throw new Exception(String.Format
                ("In ReadInImageCallback, got the wrong number of " +
                "bytes from the image: {0}.", bytesRead));
        ProcessImage(state.pixels, state.imageNum);
        stream.Close();

        // Now write out the image.  
        // Using asynchronous I/O here appears not to be best practice.
        // It ends up swamping the threadpool, because the threadpool
        // threads are blocked on I/O requests that were just queued to
        // the threadpool. 
        FileStream fs = new FileStream(ImageBaseName + state.imageNum +
            ".done", FileMode.Create, FileAccess.Write, FileShare.None,
            4096, false);
        fs.Write(state.pixels, 0, numPixels);
        fs.Close();

        // This application model uses too much memory.
        // Releasing memory as soon as possible is a good idea, 
        // especially global state.
        state.pixels = null;
        fs = null;
        // Record that an image is finished now.
        lock (NumImagesMutex)
        {
            NumImagesToFinish--;
            if (NumImagesToFinish == 0)
            {
                Monitor.Enter(WaitObject);
                Monitor.Pulse(WaitObject);
                Monitor.Exit(WaitObject);
            }
        }
    }

    public static void ProcessImage(byte[] pixels, int imageNum)
    {
        Console.WriteLine("ProcessImage {0}", imageNum);
        int y;
        // Perform some CPU-intensive operation on the image.
        for (int x = 0; x < processImageRepeats; x += 1)
            for (y = 0; y < numPixels; y += 1)
                pixels[y] += 1;
        Console.WriteLine("ProcessImage {0} done.", imageNum);
    }

    public static void ProcessImagesInBulk()
    {
        Console.WriteLine("Processing images...  ");
        long t0 = Environment.TickCount;
        NumImagesToFinish = numImages;
        AsyncCallback readImageCallback = new
            AsyncCallback(ReadInImageCallback);
        for (int i = 0; i < numImages; i++)
        {
            ImageStateObject state = new ImageStateObject();
            state.pixels = new byte[numPixels];
            state.imageNum = i;
            // Very large items are read only once, so you can make the 
            // buffer on the FileStream very small to save memory.
            FileStream fs = new FileStream(ImageBaseName + i + ".tmp",
                FileMode.Open, FileAccess.Read, FileShare.Read, 1, true);
            state.fs = fs;
            fs.BeginRead(state.pixels, 0, numPixels, readImageCallback,
                state);
        }

        // Determine whether all images are done being processed.  
        // If not, block until all are finished.
        bool mustBlock = false;
        lock (NumImagesMutex)
        {
            if (NumImagesToFinish > 0)
                mustBlock = true;
        }
        if (mustBlock)
        {
            Console.WriteLine("All worker threads are queued. " +
                " Blocking until they complete. numLeft: {0}",
                NumImagesToFinish);
            Monitor.Enter(WaitObject);
            Monitor.Wait(WaitObject);
            Monitor.Exit(WaitObject);
        }
        long t1 = Environment.TickCount;
        Console.WriteLine("Total time processing images: {0}ms",
            (t1 - t0));
    }

    public static void Cleanup()
    {
        for (int i = 0; i < numImages; i++)
        {
            File.Delete(ImageBaseName + i + ".tmp");
            File.Delete(ImageBaseName + i + ".done");
        }
    }

    public static void TryToClearDiskCache()
    {
        // Try to force all pending writes to disk, and clear the
        // disk cache of any data.
        byte[] bytes = new byte[100 * (1 << 20)];
        for (int i = 0; i < bytes.Length; i++)
            bytes[i] = 0;
        bytes = null;
        GC.Collect();
        Thread.Sleep(2000);
    }

    public static void Main(String[] args)
    {
        Console.WriteLine("Bulk image processing sample application," +
            " using asynchronous IO");
        Console.WriteLine("Simulates applying a simple " +
            "transformation to {0} \"images\"", numImages);
        Console.WriteLine("(Async FileStream & Threadpool benchmark)");
        Console.WriteLine("Warning - this test requires {0} " +
            "bytes of temporary space", (numPixels * numImages * 2));

        if (args.Length == 1)
        {
            processImageRepeats = Int32.Parse(args[0]);
            Console.WriteLine("ProcessImage inner loop - {0}.",
                processImageRepeats);
        }
        MakeImageFiles();
        TryToClearDiskCache();
        ProcessImagesInBulk();
        Cleanup();
    }
    [DllImport("KERNEL32", SetLastError = true)]
    private static extern void FlushFileBuffers(IntPtr handle);
}



El siguiente es un ejemplo sincrónico de la misma hipótesis.

using System;
using System.IO;
using System.Threading;
using System.Runtime.InteropServices;
using System.Runtime.Remoting.Messaging;
using System.Security.Permissions;

public class BulkImageProcSync
{
    public const String ImageBaseName = "tmpImage-";
    public const int numImages = 200;
    public const int numPixels = 512 * 512;

    // ProcessImage has a simple O(N) loop, and you can vary the number
    // of times you repeat that loop to make the application more CPU-
    // bound or more IO-bound.
    public static int processImageRepeats = 20;

    [SecurityPermissionAttribute(SecurityAction.Demand, Flags=SecurityPermissionFlag.UnmanagedCode)]
    public static void MakeImageFiles()
    {
        int sides = (int)Math.Sqrt(numPixels);
        Console.Write("Making {0} {1}x{1} images... ", numImages,
            sides);
        byte[] pixels = new byte[numPixels];
        int i;
        for (i = 0; i < numPixels; i++)
            pixels[i] = (byte)i;
        FileStream fs;
        for (i = 0; i < numImages; i++)
        {
            fs = new FileStream(ImageBaseName + i + ".tmp",
                FileMode.Create, FileAccess.Write, FileShare.None,
                8192, false);
            fs.Write(pixels, 0, pixels.Length);
            FlushFileBuffers(fs.SafeFileHandle.DangerousGetHandle());
            fs.Close();
        }
        fs = null;
        Console.WriteLine("Done.");
    }

    public static void ProcessImage(byte[] pixels, int imageNum)
    {
        Console.WriteLine("ProcessImage {0}", imageNum);
        int y;
        // Perform some CPU-intensive operation on the image.
        for (int x = 0; x < processImageRepeats; x += 1)
            for (y = 0; y < numPixels; y += 1)
                pixels[y] += 1;
        Console.WriteLine("ProcessImage {0} done.", imageNum);
    }

    public static void ProcessImagesInBulk()
    {
        Console.WriteLine("Processing images... ");
        long t0 = Environment.TickCount;
        byte[] pixels = new byte[numPixels];
        FileStream input;
        FileStream output;
        for (int i = 0; i < numImages; i++)
        {
            input = new FileStream(ImageBaseName + i + ".tmp",
                FileMode.Open, FileAccess.Read, FileShare.Read,
                4196, false);
            input.Read(pixels, 0, numPixels);
            input.Close();
            ProcessImage(pixels, i);
            output = new FileStream(ImageBaseName + i + ".done",
                FileMode.Create, FileAccess.Write, FileShare.None,
                4196, false);
            output.Write(pixels, 0, numPixels);
            output.Close();
        }
        input = null;
        output = null;
        long t1 = Environment.TickCount;
        Console.WriteLine("Total time processing images: {0}ms",
            (t1 - t0));
    }

    public static void Cleanup()
    {
        for (int i = 0; i < numImages; i++)
        {
            File.Delete(ImageBaseName + i + ".tmp");
            File.Delete(ImageBaseName + i + ".done");
        }
    }

    public static void TryToClearDiskCache()
    {
        byte[] bytes = new byte[100 * (1 << 20)];
        for (int i = 0; i < bytes.Length; i++)
            bytes[i] = 0;
        bytes = null;
        GC.Collect();
        Thread.Sleep(2000);
    }

    public static void Main(String[] args)
    {
        Console.WriteLine("Bulk image processing sample application," +
            " using synchronous I/O.");
        Console.WriteLine("Simulates applying a simple " +
            "transformation to {0} \"images.\"", numImages);
        Console.WriteLine("(ie, Sync FileStream benchmark).");
        Console.WriteLine("Warning - this test requires {0} " +
            "bytes of temporary space", (numPixels * numImages * 2));

        if (args.Length == 1)
        {
            processImageRepeats = Int32.Parse(args[0]);
            Console.WriteLine("ProcessImage inner loop  {0}",
                processImageRepeats);
        }

        MakeImageFiles();
        TryToClearDiskCache();
        ProcessImagesInBulk();
        Cleanup();
    }

    [DllImport("KERNEL32", SetLastError = true)]
    private static extern void FlushFileBuffers(IntPtr handle);
}


Adiciones de comunidad

AGREGAR
Mostrar:
© 2015 Microsoft