Was this page helpful?
Your feedback about this content is important. Let us know what you think.
Additional feedback?
1500 characters remaining
Export (0) Print
Expand All

cos

Returns the cosine of a complex number.

template<class Type> 
   complex<Type> cos( 
      const complex<Type>& _ComplexNum 
   );

_ComplexNum

The complex number whose cosine is being determined.

The complex number that is the cosine of the input complex number.

Identities defining the complex cosines:

cos (z) = (1/2)*( exp (iz) + exp (-iz) )

cos (z) = cos (a + bi) = cos (a) cosh (b) - isin (a) sinh (b)

// complex_cos.cpp
// compile with: /EHsc
#include <vector>
#include <complex>
#include <iostream>

int main( )
{
   using namespace std;
   double pi = 3.14159265359;
   complex <double> c1 ( 3.0 , 4.0 );
   cout << "Complex number c1 = " << c1 << endl;

   // Values of cosine of a complex number c1
   complex <double> c2 = cos ( c1 );
   cout << "Complex number c2 = cos ( c1 ) = " << c2 << endl;
   double absc2 = abs ( c2 );
   double argc2 = arg ( c2 );
   cout << "The modulus of c2 is: " << absc2 << endl;
   cout << "The argument of c2 is: "<< argc2 << " radians, which is " 
        << argc2 * 180 / pi << " degrees." << endl << endl; 

   // Cosines of the standard angles in the first 
   // two quadrants of the complex plane
   vector <complex <double> > v1;
   vector <complex <double> >::iterator Iter1;
   complex <double> vc1  ( polar (1.0, pi / 6) );
   v1.push_back( cos ( vc1 ) );
   complex <double> vc2  ( polar (1.0, pi / 3) );
   v1.push_back( cos ( vc2 ) );
   complex <double> vc3  ( polar (1.0, pi / 2) );
   v1.push_back( cos ( vc3) );
   complex <double> vc4  ( polar (1.0, 2 * pi / 3) );
   v1.push_back( cos ( vc4 ) );
   complex <double> vc5  ( polar (1.0, 5 * pi / 6) );
   v1.push_back( cos ( vc5 ) );
   complex <double> vc6  ( polar (1.0,  pi ) );
   v1.push_back( cos ( vc6 ) );

   cout << "The complex components cos (vci), where abs (vci) = 1"
        << "\n& arg (vci) = i * pi / 6 of the vector v1 are:\n" ;
   for ( Iter1 = v1.begin( ) ; Iter1 != v1.end( ) ; Iter1++ )
      cout << *Iter1 << endl;
}
Complex number c1 = (3,4)
Complex number c2 = cos ( c1 ) = (-27.0349,-3.85115)
The modulus of c2 is: 27.3079
The argument of c2 is: -3.00009 radians, which is -171.893 degrees.

The complex components cos (vci), where abs (vci) = 1
& arg (vci) = i * pi / 6 of the vector v1 are:
(0.730543,-0.39695)
(1.22777,-0.469075)
(1.54308,1.21529e-013)
(1.22777,0.469075)
(0.730543,0.39695)
(0.540302,-1.74036e-013)

Header: <complex>

Namespace: std

Show:
© 2015 Microsoft