Windows Dev Center

Information
The topic you requested is included in another documentation set. For convenience, it's displayed below. Choose Switch to see the topic in its original location.

SymmetricKeyAlgorithmProvider class

Represents a provider of symmetric key algorithms. For more information, see Symmetric Key Encryption.

Syntax


var symmetricKeyAlgorithmProvider = Windows.Security.Cryptography.Core.SymmetricKeyAlgorithmProvider;

Members

The SymmetricKeyAlgorithmProvider class has these types of members:

Methods

The SymmetricKeyAlgorithmProvider class has these methods. With C#, Visual Basic, and C++, it also inherits methods from the Object class.

MethodDescription
CreateSymmetricKey Creates a symmetric key.
OpenAlgorithm Creates an instance of the SymmetricKeyAlgorithmProvider class and opens the specified algorithm for use.

 

Properties

The SymmetricKeyAlgorithmProvider class has these properties.

PropertyAccess typeDescription

AlgorithmName

Read-onlyGets the name of the open symmetric algorithm.

BlockLength

Read-onlyGets the size, in bytes, of the cipher block for the open algorithm.

 

Remarks

You create a SymmetricKeyAlgorithmProvider object by calling the static OpenAlgorithm method and specifying one of the following algorithm names.

  • No padding:
    • DES_CBC
    • DES_ECB
    • 3DES_CBC
    • 3DES_ECB
    • RC2_CBC
    • RC2_ECB
    • AES_CBC
    • AES_ECB
  • PKCS#7 block padding modes:
    • AES_CBC_PKCS7
    • AES_ECB_PKCS7
    • DES_CBC_PKCS7
    • DES_ECB_PKCS7
    • 3DES_CBC_PKCS7
    • 3DES_ECB_PKCS7
    • RC2_CBC_PKCS7
    • RC2_ECB_PKCS7
  • Authenticated modes (see the EncryptedAndAuthenticatedData class):
    • AES_GCM
    • AES_CCM
  • Stream Cipher:
    • RC4

Examples


using Windows.Security.Cryptography;
using Windows.Security.Cryptography.Core;
using Windows.Storage.Streams;

namespace SampleSymmetricKeyAlgorithmProvider
{
    sealed partial class SymmKeyAlgProviderApp : Application
    {
        public SymmKeyAlgProviderApp()
        {
            // Initialize the application.
            this.InitializeComponent();

            // Initialize the encryption process.
            String strMsg = "1234567812345678";     // Data to encrypt.
            String strAlgName = SymmetricAlgorithmNames.AesCbc;
            UInt32 keyLength = 32;                  // Length of the key, in bytes
            BinaryStringEncoding encoding;          // Binary encoding value
            IBuffer iv;                             // Initialization vector
            CryptographicKey key;                   // Symmetric key

            // Encrypt a message.
            IBuffer buffEncrypted = this.SampleCipherEncryption(
                strMsg,
                strAlgName,
                keyLength,
                out encoding,
                out iv,
                out key);

            // Decrypt a message.
            this.SampleCipherDecryption(
                strAlgName,
                buffEncrypted,
                iv,
                encoding,
                key);
        }

        public IBuffer SampleCipherEncryption(
            String strMsg,
            String strAlgName,
            UInt32 keyLength,
            out BinaryStringEncoding encoding,
            out IBuffer iv,
            out CryptographicKey key)
        {
            // Initialize the initialization vector.
            iv = null;

            // Initialize the binary encoding value.
            encoding = BinaryStringEncoding.Utf8;

            // Create a buffer that contains the encoded message to be encrypted. 
            IBuffer buffMsg = CryptographicBuffer.ConvertStringToBinary(strMsg, encoding);

            // Open a symmetric algorithm provider for the specified algorithm. 
            SymmetricKeyAlgorithmProvider objAlg = SymmetricKeyAlgorithmProvider.OpenAlgorithm(strAlgName);

            // Demonstrate how to retrieve the name of the algorithm used.
            String strAlgNameUsed = objAlg.AlgorithmName;

            // Determine whether the message length is a multiple of the block length.
            // This is not necessary for PKCS #7 algorithms which automatically pad the
            // message to an appropriate length.
            if (!strAlgName.Contains("PKCS7"))
            {
               if ((buffMsg.Length % objAlg.BlockLength) != 0)
                {
                    throw new Exception("Message buffer length must be multiple of block length.");
                }
            }

            // Create a symmetric key.
            IBuffer keyMaterial = CryptographicBuffer.GenerateRandom(keyLength);
            key = objAlg.CreateSymmetricKey(keyMaterial);

            // CBC algorithms require an initialization vector. Here, a random
            // number is used for the vector.
            if (strAlgName.Contains("CBC"))
            {
                iv = CryptographicBuffer.GenerateRandom(objAlg.BlockLength);
            }

            // Encrypt the data and return.
            IBuffer buffEncrypt = CryptographicEngine.Encrypt(key, buffMsg, iv);
            return buffEncrypt;
        }

        public void SampleCipherDecryption(
            String strAlgName,
            IBuffer buffEncrypt,
            IBuffer iv,
            BinaryStringEncoding encoding,
            CryptographicKey key)
        {
            // Declare a buffer to contain the decrypted data.
            IBuffer buffDecrypted;

            // Open an symmetric algorithm provider for the specified algorithm. 
            SymmetricKeyAlgorithmProvider objAlg = SymmetricKeyAlgorithmProvider.OpenAlgorithm(strAlgName);

            // The input key must be securely shared between the sender of the encrypted message
            // and the recipient. The initialization vector must also be shared but does not
            // need to be shared in a secure manner. If the sender encodes a message string 
            // to a buffer, the binary encoding method must also be shared with the recipient.
            buffDecrypted = CryptographicEngine.Decrypt(key, buffEncrypt, iv);

            // Convert the decrypted buffer to a string (for display). If the sender created the
            // original message buffer from a string, the sender must tell the recipient what 
            // BinaryStringEncoding value was used. Here, BinaryStringEncoding.Utf8 is used to
            // convert the message to a buffer before encryption and to convert the decrypted
            // buffer back to the original plaintext.
            String strDecrypted = CryptographicBuffer.ConvertBinaryToString(encoding, buffDecrypted);
        }
    }
}


Requirements (Windows 10 device family)

Device family

Universal

API contract

Windows.Foundation.UniversalApiContract, introduced version 1.0

Namespace

Windows.Security.Cryptography.Core
Windows::Security::Cryptography::Core [C++]

Metadata

Windows.Foundation.UniversalApiContract.winmd

Requirements (Windows 8.x and Windows Phone 8.x)

Minimum supported client

Windows 8 [Windows Store apps, desktop apps]

Minimum supported server

Windows Server 2012 [Windows Store apps, desktop apps]

Minimum supported phone

Windows Phone 8.1 [Windows Runtime apps only]

Namespace

Windows.Security.Cryptography.Core
Windows::Security::Cryptography::Core [C++]

Metadata

Windows.winmd

Attributes

[DualApiPartition()]
[MarshalingBehavior(Agile)]
[Threading(Both)]
[Version(0x06020000)]

See also

Object
AsymmetricKeyAlgorithmProvider
CryptographicEngine
CryptographicKey

 

 

Show:
© 2015 Microsoft