Timer.Stop Method

Stops raising the Elapsed event by setting Enabled to false.

Namespace: System.Timers
Assembly: System (in system.dll)

Public Sub Stop
Dim instance As Timer

public void Stop ()
public function Stop ()

You can also stop timing by setting Enabled to false.


The Elapsed event is raised on a ThreadPool thread, so the event-handling method might run on one thread at the same time that a call to the Stop method runs on another thread. This might result in the Elapsed event being raised after the Stop method is called. The code example for this topic shows one way to prevent the race condition.

The following code example shows one way to prevent the thread that calls the Stop method from continuing until a currently executing Elapsed event ends, and also to prevent two Elapsed events from executing the event handler at the same time (often referred to as reentrancy).

The example executes 100 test runs. Each time the test is run, the timer is started with an interval of 150 milliseconds. The event handler uses the Thread.Sleep method to simulate a task that randomly varies in length from 50 to 200 milliseconds. The test method also starts a control thread that waits for a second and then stops the timer. If an event is being handled when the control thread stops the timer, the control thread must wait until the event is finished before proceeding.

The Interlocked.CompareExchange(Int32,Int32,Int32) method overload is used to avoid reentrancy and to prevent the control thread from continuing until an executing event ends. The event handler uses the CompareExchange(Int32,Int32,Int32) method to set a control variable to 1, but only if the value is currently zero. This is an atomic operation. If the return value is zero, the control variable has been set to 1 and the event handler proceeds. If the return value is non-zero, the event is simply discarded to avoid reentrancy. (If it were necessary to execute every event, the Monitor class would be a better way to synchronize the events.) When the event handler ends, it sets the control variable back to zero. The example records the total number of events that executed, that were discarded because of reentrancy, and that occurred after the Stop method was called.

The control thread uses the CompareExchange(Int32,Int32,Int32) method to set the control variable to -1 (minus one), but only if the value is currently zero. If the atomic operation returns non-zero, an event is currently executing. The control thread waits and tries again. The example records the number of times the control thread had to wait for an event to finish.

Imports System
Imports System.Timers
Imports System.Threading

Public Module Test
    ' Change these values to control the behavior of the program.
    Private testRuns As Integer = 100 
    ' Times are given in milliseconds:
    Private testRunsFor As Integer = 1000
    Private timerInterval As Integer = 150

    ' Qualify the name to avoid confusion with the
    ' System.Threading.Timer class.
    Private WithEvents Timer1 As New System.Timers.Timer
    Private rand As New Random()

    ' This is the synchronization point that prevents events
    ' from running concurrently, and prevents the main thread 
    ' from executing code after the Stop method until any 
    ' event handlers are done executing.
    Private syncPoint As Integer = 0

    ' Count the number of times the event handler is called,
    ' is executed, is skipped, or is called after Stop.
    Private numEvents As Integer = 0
    Private numExecuted As Integer = 0
    Private numSkipped As Integer = 0
    Private numLate As Integer = 0

    ' Count the number of times the thread that calls Stop
    ' has to wait for an Elapsed event to finish.
    Private numWaits As Integer = 0

    <MTAThread> _
    Sub Main()
        Timer1.Interval = timerInterval

        For i As Integer = 1 To testRuns
            Console.Write(vbCr & "Test {0}/{1}    ", i, testRuns)

        Console.WriteLine("{0} test runs completed.", testRuns)
        Console.WriteLine("{0} events were raised.", numEvents)
        Console.WriteLine("{0} events executed.", numExecuted)
        Console.WriteLine("{0} events were skipped for concurrency.", numSkipped)
        Console.WriteLine("{0} events were skipped because they were late.", numLate)
        Console.WriteLine("Control thread waited {0} times for an event to complete.", numWaits)
    End Sub

    Sub TestRun()
        ' Set syncPoint to zero before starting the test 
        ' run. 
        syncPoint = 0

        Timer1.Enabled = True

        ' Start the control thread that shuts off the timer.
        Dim t As New Thread(AddressOf ControlThreadProc)

        ' Wait until the control thread is done before proceeding.
        ' This keeps the test runs from overlapping.

    End Sub

    Private Sub ControlThreadProc()
        ' Allow the timer to run for a period of time, and then 
        ' stop it.

        ' The 'counted' flag ensures that if this thread has
        ' to wait for an event to finish, the wait only gets 
        ' counted once.
        Dim counted As Boolean = False

        ' Ensure that if an event is currently executing,
        ' no further processing is done on this thread until
        ' the event handler is finished. This is accomplished
        ' by using CompareExchange to place -1 in syncPoint,
        ' but only if syncPoint is currently zero (specified
        ' by the third parameter of CompareExchange). 
        ' CompareExchange returns the original value that was
        ' in syncPoint. If it was not zero, then there's an
        ' event handler running, and it is necessary to try
        ' again.
        While Interlocked.CompareExchange(syncPoint, -1, 0) <> 0 
            ' Give up the rest of this thread's current time
            ' slice. This is a fairly naive algorithm for 
            ' yielding.

            ' Tally a wait, but don't count multiple calls to
            ' Thread.Sleep.
            If Not counted Then
                numWaits += 1
                counted = True
            End If
        End While

        ' Any processing done after this point does not conflict
        ' with timer events. This is the purpose of the call to
        ' CompareExchange. If the processing done here would not
        ' cause a problem when run concurrently with timer events,
        ' then there is no need for the extra synchronization.
    End Sub

    ' Event-handling methof for the Elapsed event.
    Private Sub Timer1_ElapsedEventHandler( _
        ByVal sender As Object, _
        ByVal e As ElapsedEventArgs _
      ) Handles Timer1.Elapsed

        numEvents += 1

        ' This example assumes that overlapping events can be
        ' discarded. That is, if an Elapsed event is raised before 
        ' the previous event is finished processing, the second
        ' event is ignored. 
        ' CompareExchange is used to take control of syncPoint, 
        ' and to determine whether the attempt was successful. 
        ' CompareExchange attempts to put 1 into syncPoint, but
        ' only if the current value of syncPoint is zero 
        ' (specified by the third parameter). If another thread
        ' has set syncPoint to 1, or if the control thread has
        ' set syncPoint to -1, the current event is skipped. 
        ' (Normally it would not be necessary to use a local 
        ' variable for the return value. A local variable is 
        ' used here to determine the reason the event was 
        ' skipped.)
        Dim sync As Integer = Interlocked.CompareExchange(syncPoint, 1, 0)
        If sync = 0 Then
            ' No other event was executing.
            ' The event handler simulates an amount of work
            ' lasting between 50 and 200 milliseconds, so that
            ' some events will overlap.
            Dim delay As Integer = 50 + rand.Next(150)
            numExecuted += 1

            ' Release control of syncPoint.
            syncPoint = 0
            If sync = 1 Then numSkipped += 1 Else numLate += 1
        End If
    End Sub 

End Module

' On a dual-processor computer, this code example produces
' results similar to the following:
'Test 100/100    100 test runs completed.
'600 events were raised.
'488 events executed.
'112 events were skipped for concurrency.
'0 events were skipped because they were late.
'Control thread waited 73 times for an event to complete.

Windows 98, Windows 2000 SP4, Windows Millennium Edition, Windows Server 2003, Windows XP Media Center Edition, Windows XP Professional x64 Edition, Windows XP SP2, Windows XP Starter Edition

The .NET Framework does not support all versions of every platform. For a list of the supported versions, see System Requirements.

.NET Framework

Supported in: 2.0, 1.1, 1.0