Was this page helpful?
Your feedback about this content is important. Let us know what you think.
Additional feedback?
1500 characters remaining
Export (0) Print
Expand All

Math.Exp Method

Returns e raised to the specified power.

Namespace:  System
Assemblies:   mscorlib (in mscorlib.dll)
  System.Runtime.Extensions (in System.Runtime.Extensions.dll)

public static double Exp(
	double d
)

Parameters

d
Type: System.Double

A number specifying a power.

Return Value

Type: System.Double
The number e raised to the power d. If d equals NaN or PositiveInfinity, that value is returned. If d equals NegativeInfinity, 0 is returned.

e is a mathematical constant whose value is approximately 2.71828.

Use the Pow method to calculate powers of other bases.

Exp is the inverse of Log.

The following example uses Exp to evaluate certain exponential and logarithmic identities for selected values.

// Example for the Math.Exp( double ) method. 
using System;

class ExpDemo 
{
    public static void Main() 
    {
        Console.WriteLine( 
            "This example of Math.Exp( double ) " +
            "generates the following output.\n" );
        Console.WriteLine( 
            "Evaluate [e ^ ln(X) == ln(e ^ X) == X] " +
            "with selected values for X:" );

        UseLnExp(0.1);
        UseLnExp(1.2);
        UseLnExp(4.9);
        UseLnExp(9.9);

        Console.WriteLine( 
            "\nEvaluate these identities with " +
            "selected values for X and Y:" );
        Console.WriteLine( "   (e ^ X) * (e ^ Y) == e ^ (X + Y)" );
        Console.WriteLine( "   (e ^ X) ^ Y == e ^ (X * Y)" );
        Console.WriteLine( "   X ^ Y == e ^ (Y * ln(X))" );

        UseTwoArgs(0.1, 1.2);
        UseTwoArgs(1.2, 4.9);
        UseTwoArgs(4.9, 9.9);
    }

    // Evaluate logarithmic/exponential identity with a given argument. 
    static void UseLnExp(double arg)
    {
        // Evaluate e ^ ln(X) == ln(e ^ X) == X.
        Console.WriteLine( 
            "\n      Math.Exp(Math.Log({0})) == {1:E16}\n" +
            "      Math.Log(Math.Exp({0})) == {2:E16}",
            arg, Math.Exp(Math.Log(arg)), Math.Log(Math.Exp(arg)) );
    }

    // Evaluate exponential identities that are functions of two arguments. 
    static void UseTwoArgs(double argX, double argY)
    {
        // Evaluate (e ^ X) * (e ^ Y) == e ^ (X + Y).
        Console.WriteLine( 
            "\nMath.Exp({0}) * Math.Exp({1}) == {2:E16}" + 
            "\n          Math.Exp({0} + {1}) == {3:E16}", 
            argX, argY, Math.Exp(argX) * Math.Exp(argY),
            Math.Exp(argX + argY) );

        // Evaluate (e ^ X) ^ Y == e ^ (X * Y).
        Console.WriteLine( 
            " Math.Pow(Math.Exp({0}), {1}) == {2:E16}" +
            "\n          Math.Exp({0} * {1}) == {3:E16}",
            argX, argY, Math.Pow(Math.Exp(argX), argY),
            Math.Exp(argX * argY) );

        // Evaluate X ^ Y == e ^ (Y * ln(X)).
        Console.WriteLine( 
            "           Math.Pow({0}, {1}) == {2:E16}" + 
            "\nMath.Exp({1} * Math.Log({0})) == {3:E16}", 
            argX, argY, Math.Pow(argX, argY), 
            Math.Exp(argY * Math.Log(argX)) );
    }
}

/*
This example of Math.Exp( double ) generates the following output.

Evaluate [e ^ ln(X) == ln(e ^ X) == X] with selected values for X:

      Math.Exp(Math.Log(0.1)) == 1.0000000000000001E-001
      Math.Log(Math.Exp(0.1)) == 1.0000000000000008E-001

      Math.Exp(Math.Log(1.2)) == 1.2000000000000000E+000
      Math.Log(Math.Exp(1.2)) == 1.2000000000000000E+000

      Math.Exp(Math.Log(4.9)) == 4.9000000000000012E+000
      Math.Log(Math.Exp(4.9)) == 4.9000000000000004E+000

      Math.Exp(Math.Log(9.9)) == 9.9000000000000004E+000
      Math.Log(Math.Exp(9.9)) == 9.9000000000000004E+000

Evaluate these identities with selected values for X and Y:
   (e ^ X) * (e ^ Y) == e ^ (X + Y)
   (e ^ X) ^ Y == e ^ (X * Y)
   X ^ Y == e ^ (Y * ln(X))

Math.Exp(0.1) * Math.Exp(1.2) == 3.6692966676192444E+000
          Math.Exp(0.1 + 1.2) == 3.6692966676192444E+000
 Math.Pow(Math.Exp(0.1), 1.2) == 1.1274968515793757E+000
          Math.Exp(0.1 * 1.2) == 1.1274968515793757E+000
           Math.Pow(0.1, 1.2) == 6.3095734448019331E-002
Math.Exp(1.2 * Math.Log(0.1)) == 6.3095734448019344E-002

Math.Exp(1.2) * Math.Exp(4.9) == 4.4585777008251705E+002
          Math.Exp(1.2 + 4.9) == 4.4585777008251716E+002
 Math.Pow(Math.Exp(1.2), 4.9) == 3.5780924170885260E+002
          Math.Exp(1.2 * 4.9) == 3.5780924170885277E+002
           Math.Pow(1.2, 4.9) == 2.4433636334442981E+000
Math.Exp(4.9 * Math.Log(1.2)) == 2.4433636334442981E+000

Math.Exp(4.9) * Math.Exp(9.9) == 2.6764450551890982E+006
          Math.Exp(4.9 + 9.9) == 2.6764450551891015E+006
 Math.Pow(Math.Exp(4.9), 9.9) == 1.1684908531676833E+021
          Math.Exp(4.9 * 9.9) == 1.1684908531676829E+021
           Math.Pow(4.9, 9.9) == 6.8067718210957060E+006
Math.Exp(9.9 * Math.Log(4.9)) == 6.8067718210956985E+006
*/

.NET Framework

Supported in: 4.6, 4.5, 4, 3.5, 3.0, 2.0, 1.1

.NET Framework Client Profile

Supported in: 4, 3.5 SP1

XNA Framework

Supported in: 3.0, 2.0, 1.0

.NET for Windows Phone apps

Supported in: Windows Phone 8.1, Windows Phone Silverlight 8.1, Windows Phone Silverlight 8

Portable Class Library

Supported in: Portable Class Library
Show:
© 2015 Microsoft