GC.GetTotalMemory Method

Retrieves the number of bytes currently thought to be allocated. A parameter indicates whether this method can wait a short interval before returning, to allow the system to collect garbage and finalize objects.

Namespace: System
Assembly: mscorlib (in mscorlib.dll)

'Declaration
Public Shared Function GetTotalMemory ( _
	forceFullCollection As Boolean _
) As Long
'Usage
Dim forceFullCollection As Boolean
Dim returnValue As Long

returnValue = GC.GetTotalMemory(forceFullCollection)
public static long GetTotalMemory (
	boolean forceFullCollection
)
public static function GetTotalMemory (
	forceFullCollection : boolean
) : long
Not applicable.

Parameters

forceFullCollection

true to indicate that this method can wait for garbage collection to occur before returning; otherwise, false.

Return Value

A number that is the best available approximation of the number of bytes currently allocated in managed memory.

If the forceFullCollection parameter is true, this method waits a short interval before returning while the system collects garbage and finalizes objects. The duration of the interval is an internally specified limit determined by the number of garbage collection cycles completed and the change in the amount of memory recovered between cycles. The garbage collector does not guarantee that all inaccessible memory is collected.

The following example demonstrates how to use the GetTotalMemory method to get and display the number of bytes currently allocated in managed memory.

Imports System

Namespace GCCollectInt_Example
    Class MyGCCollectClass
        Private maxGarbage As Long = 10000

        Public Shared Sub Main()
            Dim myGCCol As New MyGCCollectClass

            'Determine the maximum number of generations the system
            'garbage collector currently supports.
            Console.WriteLine("The highest generation is {0}", GC.MaxGeneration)

            myGCCol.MakeSomeGarbage()

            'Determine which generation myGCCol object is stored in.
            Console.WriteLine("Generation: {0}", GC.GetGeneration(myGCCol))

            'Determine the best available approximation of the number 
            'of bytes currently allocated in managed memory.
            Console.WriteLine("Total Memory: {0}", GC.GetTotalMemory(False))

            'Perform a collection of generation 0 only.
            GC.Collect(0)

            'Determine which generation myGCCol object is stored in.
            Console.WriteLine("Generation: {0}", GC.GetGeneration(myGCCol))

            Console.WriteLine("Total Memory: {0}", GC.GetTotalMemory(False))

            'Perform a collection of all generations up to and including 2.
            GC.Collect(2)

            'Determine which generation myGCCol object is stored in.
            Console.WriteLine("Generation: {0}", GC.GetGeneration(myGCCol))
            Console.WriteLine("Total Memory: {0}", GC.GetTotalMemory(False))
            Console.Read()

        End Sub


        Sub MakeSomeGarbage()
            Dim vt As Version

            Dim i As Integer
            For i = 0 To maxGarbage - 1
                'Create objects and release them to fill up memory
                'with unused objects.
                vt = New Version
            Next i
        End Sub
    End Class
End Namespace

package GCCollectIntExample; 

import System.* ;

class MyGCCollectClass
{
    private static final long maxGarbage = 1000;

    public static void main(String[] args)
    {
        MyGCCollectClass myGCCol = new MyGCCollectClass();

        // Determine the maximum number of generations the system
        // garbage collector currently supports.
        Console.WriteLine("The highest generation is {0}", 
            System.Convert.ToString(GC.get_MaxGeneration()));
        myGCCol.MakeSomeGarbage();

        // Determine which generation myGCCol object is stored in.
        Console.WriteLine("Generation: {0}", 
            System.Convert.ToString(GC.GetGeneration(myGCCol)));

        // Determine the best available approximation of the number 
        // of bytes currently allocated in managed memory.
        Console.WriteLine("Total Memory: {0}", 
            System.Convert.ToString(GC.GetTotalMemory(false)));

        // Perform a collection of generation 0 only.
        GC.Collect(0);

        // Determine which generation myGCCol object is stored in.
        Console.WriteLine("Generation: {0}", 
            System.Convert.ToString(GC.GetGeneration(myGCCol)));
        Console.WriteLine("Total Memory: {0}", 
            System.Convert.ToString(GC.GetTotalMemory(false)));

        // Perform a collection of all generations up to and including 2.
        GC.Collect(2);

        // Determine which generation myGCCol object is stored in.
        Console.WriteLine("Generation: {0}", 
            System.Convert.ToString(GC.GetGeneration(myGCCol)));
        Console.WriteLine("Total Memory: {0}", 
            System.Convert.ToString(GC.GetTotalMemory(false)));
        Console.Read();
    } //main

    void MakeSomeGarbage()
    {
        Version vt;

        for (int i = 0; i < maxGarbage; i++) {
            // Create objects and release them to fill up memory
            // with unused objects.
            vt = new Version();
        }
    } //MakeSomeGarbage
} //MyGCCollectClass

Windows 98, Windows Server 2000 SP4, Windows CE, Windows Millennium Edition, Windows Mobile for Pocket PC, Windows Mobile for Smartphone, Windows Server 2003, Windows XP Media Center Edition, Windows XP Professional x64 Edition, Windows XP SP2, Windows XP Starter Edition

The Microsoft .NET Framework 3.0 is supported on Windows Vista, Microsoft Windows XP SP2, and Windows Server 2003 SP1.

.NET Framework

Supported in: 3.0, 2.0, 1.1, 1.0

.NET Compact Framework

Supported in: 2.0, 1.0

XNA Framework

Supported in: 1.0

Community Additions

ADD
Show: