Bessel Functions
div
TOC
Collapse the table of content
Expand the table of content
The document is archived and information here might be outdated

Bessel Functions

The Bessel functions are commonly used in the mathematics of electromagnetic wave theory.

_j0, _j1, _jn
These routines return Bessel functions of the first kind: orders 0, 1, and n, respectively.
_y0, _y1, _yn
These routines return Bessel functions of the second kind: orders 0, 1, and n, respectively.

Example

// crt_bessel1.c
#include <math.h>
#include <stdio.h>

int main( void )
{
   double x = 2.387;
   int n = 3, c;

   printf( "Bessel functions for x = %f:\n", x );
   printf( " Kind   Order  Function     Result\n\n" );
   printf( " First  0      _j0( x )     %f\n", _j0( x ) );
   printf( " First  1      _j1( x )     %f\n", _j1( x ) );
   for( c = 2; c < 5; c++ )
      printf( " First  %d      _jn( %d, x )  %f\n", c, c, _jn( c, x ) );
   printf( " Second 0      _y0( x )     %f\n", _y0( x ) );
   printf( " Second 1      _y1( x )     %f\n", _y1( x ) );
   for( c = 2; c < 5; c++ )
      printf( " Second %d      _yn( %d, x )  %f\n", c, c, _yn( c, x ) );
}

Output

Bessel functions for x = 2.387000:
 Kind   Order  Function     Result

 First  0      _j0( x )     0.009288
 First  1      _j1( x )     0.522941
 First  2      _jn( 2, x )  0.428870
 First  3      _jn( 3, x )  0.195734
 First  4      _jn( 4, x )  0.063131
 Second 0      _y0( x )     0.511681
 Second 1      _y1( x )     0.094374
 Second 2      _yn( 2, x )  -0.432608
 Second 3      _yn( 3, x )  -0.819314
 Second 4      _yn( 4, x )  -1.626833

See Also

Floating-Point Support Routines | _matherr | Run-Time Routines and .NET Framework Equivalents

Show:
© 2016 Microsoft