Transformation2D

# Matrix.Transformation2D(Vector2,Single,Vector2,Vector2,Single,Vector2) Method (Microsoft.DirectX)

Builds a 2-D transformation matrix in the xy plane.

Definition

Visual Basic Public Shared Function Transformation2D( _    ByVal scalingCenter As Vector2, _    ByVal scalingRotation As Single, _    ByVal scaling As Vector2, _    ByVal rotationCenter As Vector2, _    ByVal rotation As Single, _    ByVal translation As Vector2 _) As Matrix public static Matrix Transformation2D(    Vector2 scalingCenter,    float scalingRotation,    Vector2 scaling,    Vector2 rotationCenter,    float rotation,    Vector2 translation); public: static Matrix Transformation2D(    Vector2 scalingCenter,    float scalingRotation,    Vector2 scaling,    Vector2 rotationCenter,    float rotation,    Vector2 translation); public static function Transformation2D(    scalingCenter : Vector2,    scalingRotation : float,    scaling : Vector2,    rotationCenter : Vector2,    rotation : float,    translation : Vector2) : Matrix;

Parameters

 scalingCenter Microsoft.DirectX.Vector2 A Vector2 structure that is a point identifying the scaling center. scalingRotation System.Single Scaling rotation factor. Use a zero value to specify no rotation. scaling Microsoft.DirectX.Vector2 A Vector2 structure that is a point identifying the scale. Use Vector2.Empty to specify no scaling. rotationCenter Microsoft.DirectX.Vector2 A Vector2 structure that is a point identifying the rotation center. rotation System.Single Angle of rotation, in radians. translation Microsoft.DirectX.Vector2 A Vector2 structure that identifies the translation. Use Vector2.Empty to specify no translation.

Return Value

Microsoft.DirectX.Matrix
A Matrix structure that contains the transformation matrix.

Remarks

The Transformation2D method calculates the affine transformation matrix using the following formula, with matrix concatenation evaluated in left-to-right order:

M out = (Msc)-1 * (Msr)-1 * Ms * Msr * Msc * (Mrc)-1 * Mr * Mrc * Mt

where:

• M out = output transformation matrix (the return value)
• M sc = scaling center matrix (scalingCenter)
• M sr = scaling rotation matrix (scalingRotation)
• M s = scaling matrix (scaling)
• M rc = center of rotation matrix (rotationCenter)
• M r = rotation matrix (rotation)
• M t = translation matrix (translation)

For 3-D transformations, use Transformation.

Show: