Matrix.Transformation(Vector3,Quaternion,Vector3,Vector3,Quaternion,Vector3) Method (Microsoft.DirectX)

Builds a transformation matrix.

Definition

Visual BasicPublic Shared Function Transformation( _
    ByVal scalingCenter As Vector3, _
    ByVal scalingRotation As Quaternion, _
    ByVal scalingFactor As Vector3, _
    ByVal rotationCenter As Vector3, _
    ByVal rotation As Quaternion, _
    ByVal translation As Vector3 _
) As Matrix
C#public static Matrix Transformation(
    Vector3 scalingCenter,
    Quaternion scalingRotation,
    Vector3 scalingFactor,
    Vector3 rotationCenter,
    Quaternion rotation,
    Vector3 translation
);
C++public:
static Matrix Transformation(
    Vector3 scalingCenter,
    Quaternion scalingRotation,
    Vector3 scalingFactor,
    Vector3 rotationCenter,
    Quaternion rotation,
    Vector3 translation
);
JScriptpublic static function Transformation(
    scalingCenter : Vector3,
    scalingRotation : Quaternion,
    scalingFactor : Vector3,
    rotationCenter : Vector3,
    rotation : Quaternion,
    translation : Vector3
) : Matrix;

Parameters

scalingCenter Microsoft.DirectX.Vector3
A Vector3 structure that identifies the scaling center point.
scalingRotation Microsoft.DirectX.Quaternion
A Quaternion structure that specifies the scaling rotation. Use Quaternion.Identity to specify no scaling.
scalingFactor Microsoft.DirectX.Vector3
A Vector3 structure that is the scaling vector.
rotationCenter Microsoft.DirectX.Vector3
A Vector3 structure that is a point identifying the center of rotation.
rotation Microsoft.DirectX.Quaternion
A Quaternion structure that specifies the rotation. Use Quaternion.Identity to specify no rotation.
translation Microsoft.DirectX.Vector3
A Vector3 structure that represents the translation. Use Vector3.Empty to specify no translation.

Return Value

Microsoft.DirectX.Matrix
Resulting Matrix structure.

Remarks

The Transformation method calculates the transformation matrix using the following formula, with matrix concatenation evaluated in left-to-right order.

M out = (Msc)-1 * (Msr)-1 * Ms * Msr * Msc * (Mrc)-1 * Mr * Mrc * Mt

where:

  • M out = output transformation matrix (the return value)
  • M sc = scaling center matrix (scalingCenter)
  • M sr = scaling rotation matrix (scalingRotation)
  • M s = scaling matrix (scalingFactor)
  • M rc = center of rotation matrix (rotationCenter)
  • M r = rotation matrix (rotation)
  • M t = translation matrix (translation)

For 3-D affine transformations, use AffineTransformation.

See Also

Show: