# Matrix.Transform(Vector3,Quaternion,Vector3,Vector3,Quaternion,Vector3) Method (Microsoft.DirectX)

Transforms the matrix.

Definition

Visual Basic Public Sub Transform( _    ByVal scalingCenter As Vector3, _    ByVal scalingRotation As Quaternion, _    ByVal scalingFactor As Vector3, _    ByVal rotationCenter As Vector3, _    ByVal rotation As Quaternion, _    ByVal translation As Vector3 _) public void Transform(    Vector3 scalingCenter,    Quaternion scalingRotation,    Vector3 scalingFactor,    Vector3 rotationCenter,    Quaternion rotation,    Vector3 translation); public: void Transform(    Vector3 scalingCenter,    Quaternion scalingRotation,    Vector3 scalingFactor,    Vector3 rotationCenter,    Quaternion rotation,    Vector3 translation); public function Transform(    scalingCenter : Vector3,    scalingRotation : Quaternion,    scalingFactor : Vector3,    rotationCenter : Vector3,    rotation : Quaternion,    translation : Vector3);

Parameters

 scalingCenter Microsoft.DirectX.Vector3 A Vector3 structure that identifies the scaling center point. scalingRotation Microsoft.DirectX.Quaternion A Quaternion structure that specifies the scaling rotation. Use Quaternion.Identity to specify no scaling. scalingFactor Microsoft.DirectX.Vector3 A Vector3 structure that is the scaling vector. rotationCenter Microsoft.DirectX.Vector3 A Vector3 structure that is a point that identifies the center of rotation. rotation Microsoft.DirectX.Quaternion A Quaternion structure that specifies the rotation. Use Quaternion.Identity to specify no rotation. translation Microsoft.DirectX.Vector3 A Vector3 structure that represents the translation. Use Vector3.Empty to specify no translation.

Remarks

The Transform method calculates the transformation matrix using the following formula, with matrix concatenation evaluated in left-to-right order.

M out = (Msc)-1 * (Msr)-1 * Ms * Msr * Msc * (Mrc)-1 * Mr * Mrc * Mt

where:

• M out = transformation matrix
• M sc = scaling center matrix (scalingCenter)
• M sr = scaling rotation matrix (scalingRotation)
• M s = scaling matrix (scalingFactor)
• M rc = center of rotation matrix (rotationCenter)
• M r = rotation matrix (rotation)
• M t = translation matrix (translation)

For 3-D affine transformations, use AffineTransformation.