The topic you requested is included in another documentation set. For convenience, it's displayed below. Choose Switch to see the topic in its original location.
Math::Cos Method (Double)
.NET Framework (current version)
Returns the cosine of the specified angle.
Assembly: mscorlib (in mscorlib.dll)
Parameters
- d
-
Type:
System::Double
An angle, measured in radians.
Return Value
Type: System::DoubleThe cosine of d. If d is equal to NaN, NegativeInfinity, or PositiveInfinity, this method returns NaN.
The angle, d, must be in radians. Multiply by Math::PI/180 to convert degrees to radians.
Acceptable values of d range from approximately -9223372036854775295 to approximately 9223372036854775295. For values outside this range, the Cos method returns d unchanged rather than throwing an exception.
The following example uses Cos to evaluate certain trigonometric identities for selected angles.
// Example for the trigonometric Math.Sin( double ) // and Math.Cos( double ) methods. using namespace System; // Evaluate trigonometric identities with a given angle. void UseSineCosine( double degrees ) { double angle = Math::PI * degrees / 180.0; double sinAngle = Math::Sin( angle ); double cosAngle = Math::Cos( angle ); // Evaluate sin^2(X) + cos^2(X) == 1. Console::WriteLine( "\n Math::Sin({0} deg) == {1:E16}\n" " Math::Cos({0} deg) == {2:E16}", degrees, Math::Sin( angle ), Math::Cos( angle ) ); Console::WriteLine( "(Math::Sin({0} deg))^2 + (Math::Cos({0} deg))^2 == {1:E16}", degrees, sinAngle * sinAngle + cosAngle * cosAngle ); // Evaluate sin(2 * X) == 2 * sin(X) * cos(X). Console::WriteLine( " Math::Sin({0} deg) == {1:E16}", 2.0 * degrees, Math::Sin( 2.0 * angle ) ); Console::WriteLine( " 2 * Math::Sin({0} deg) * Math::Cos({0} deg) == {1:E16}", degrees, 2.0 * sinAngle * cosAngle ); // Evaluate cos(2 * X) == cos^2(X) - sin^2(X). Console::WriteLine( " Math::Cos({0} deg) == {1:E16}", 2.0 * degrees, Math::Cos( 2.0 * angle ) ); Console::WriteLine( "(Math::Cos({0} deg))^2 - (Math::Sin({0} deg))^2 == {1:E16}", degrees, cosAngle * cosAngle - sinAngle * sinAngle ); } // Evaluate trigonometric identities that are functions of two angles. void UseTwoAngles( double degreesX, double degreesY ) { double angleX = Math::PI * degreesX / 180.0; double angleY = Math::PI * degreesY / 180.0; // Evaluate sin(X + Y) == sin(X) * cos(Y) + cos(X) * sin(Y). Console::WriteLine( "\n Math::Sin({0} deg) * Math::Cos({1} deg) +\n" " Math::Cos({0} deg) * Math::Sin({1} deg) == {2:E16}", degreesX, degreesY, Math::Sin( angleX ) * Math::Cos( angleY ) + Math::Cos( angleX ) * Math::Sin( angleY ) ); Console::WriteLine( " Math::Sin({0} deg) == {1:E16}", degreesX + degreesY, Math::Sin( angleX + angleY ) ); // Evaluate cos(X + Y) == cos(X) * cos(Y) - sin(X) * sin(Y). Console::WriteLine( " Math::Cos({0} deg) * Math::Cos({1} deg) -\n" " Math::Sin({0} deg) * Math::Sin({1} deg) == {2:E16}", degreesX, degreesY, Math::Cos( angleX ) * Math::Cos( angleY ) - Math::Sin( angleX ) * Math::Sin( angleY ) ); Console::WriteLine( " Math::Cos({0} deg) == {1:E16}", degreesX + degreesY, Math::Cos( angleX + angleY ) ); } int main() { Console::WriteLine( "This example of trigonometric " "Math::Sin( double ) and Math::Cos( double )\n" "generates the following output.\n" ); Console::WriteLine( "Convert selected values for X to radians \n" "and evaluate these trigonometric identities:" ); Console::WriteLine( " sin^2(X) + cos^2(X) == 1\n" " sin(2 * X) == 2 * sin(X) * cos(X)" ); Console::WriteLine( " cos(2 * X) == cos^2(X) - sin^2(X)" ); UseSineCosine( 15.0 ); UseSineCosine( 30.0 ); UseSineCosine( 45.0 ); Console::WriteLine( "\nConvert selected values for X and Y to radians \n" "and evaluate these trigonometric identities:" ); Console::WriteLine( " sin(X + Y) == sin(X) * cos(Y) + cos(X) * sin(Y)" ); Console::WriteLine( " cos(X + Y) == cos(X) * cos(Y) - sin(X) * sin(Y)" ); UseTwoAngles( 15.0, 30.0 ); UseTwoAngles( 30.0, 45.0 ); } /* This example of trigonometric Math::Sin( double ) and Math::Cos( double ) generates the following output. Convert selected values for X to radians and evaluate these trigonometric identities: sin^2(X) + cos^2(X) == 1 sin(2 * X) == 2 * sin(X) * cos(X) cos(2 * X) == cos^2(X) - sin^2(X) Math::Sin(15 deg) == 2.5881904510252074E-001 Math::Cos(15 deg) == 9.6592582628906831E-001 (Math::Sin(15 deg))^2 + (Math::Cos(15 deg))^2 == 1.0000000000000000E+000 Math::Sin(30 deg) == 4.9999999999999994E-001 2 * Math::Sin(15 deg) * Math::Cos(15 deg) == 4.9999999999999994E-001 Math::Cos(30 deg) == 8.6602540378443871E-001 (Math::Cos(15 deg))^2 - (Math::Sin(15 deg))^2 == 8.6602540378443871E-001 Math::Sin(30 deg) == 4.9999999999999994E-001 Math::Cos(30 deg) == 8.6602540378443871E-001 (Math::Sin(30 deg))^2 + (Math::Cos(30 deg))^2 == 1.0000000000000000E+000 Math::Sin(60 deg) == 8.6602540378443860E-001 2 * Math::Sin(30 deg) * Math::Cos(30 deg) == 8.6602540378443860E-001 Math::Cos(60 deg) == 5.0000000000000011E-001 (Math::Cos(30 deg))^2 - (Math::Sin(30 deg))^2 == 5.0000000000000022E-001 Math::Sin(45 deg) == 7.0710678118654746E-001 Math::Cos(45 deg) == 7.0710678118654757E-001 (Math::Sin(45 deg))^2 + (Math::Cos(45 deg))^2 == 1.0000000000000000E+000 Math::Sin(90 deg) == 1.0000000000000000E+000 2 * Math::Sin(45 deg) * Math::Cos(45 deg) == 1.0000000000000000E+000 Math::Cos(90 deg) == 6.1230317691118863E-017 (Math::Cos(45 deg))^2 - (Math::Sin(45 deg))^2 == 2.2204460492503131E-016 Convert selected values for X and Y to radians and evaluate these trigonometric identities: sin(X + Y) == sin(X) * cos(Y) + cos(X) * sin(Y) cos(X + Y) == cos(X) * cos(Y) - sin(X) * sin(Y) Math::Sin(15 deg) * Math::Cos(30 deg) + Math::Cos(15 deg) * Math::Sin(30 deg) == 7.0710678118654746E-001 Math::Sin(45 deg) == 7.0710678118654746E-001 Math::Cos(15 deg) * Math::Cos(30 deg) - Math::Sin(15 deg) * Math::Sin(30 deg) == 7.0710678118654757E-001 Math::Cos(45 deg) == 7.0710678118654757E-001 Math::Sin(30 deg) * Math::Cos(45 deg) + Math::Cos(30 deg) * Math::Sin(45 deg) == 9.6592582628906831E-001 Math::Sin(75 deg) == 9.6592582628906820E-001 Math::Cos(30 deg) * Math::Cos(45 deg) - Math::Sin(30 deg) * Math::Sin(45 deg) == 2.5881904510252085E-001 Math::Cos(75 deg) == 2.5881904510252096E-001 */
Universal Windows Platform
Available since 8
.NET Framework
Available since 1.1
Portable Class Library
Supported in: portable .NET platforms
Silverlight
Available since 2.0
Windows Phone Silverlight
Available since 7.0
Windows Phone
Available since 8.1
Available since 8
.NET Framework
Available since 1.1
Portable Class Library
Supported in: portable .NET platforms
Silverlight
Available since 2.0
Windows Phone Silverlight
Available since 7.0
Windows Phone
Available since 8.1
Show: