Information
The topic you requested is included in another documentation set. For convenience, it's displayed below. Choose Switch to see the topic in its original location.

norm

 

Extracts the norm of a complex number.


   template<class Type>
Type norm(
   const complex<Type>& _ComplexNum
);

_ComplexNum

The complex number whose norm is to be determined.

The norm of a complex number.

The norm of a complex number a + bi is (a2 + b2). The norm of a complex number is the square of its modulus. The modulus of a complex number is a measure of the length of the vector representing the complex number. The modulus of a complex number a + bi is sqrt(a2 + b2), written |a + bi|.

Example

// complex_norm.cpp
// compile with: /EHsc
#include <complex>
#include <iostream>

int main( )
{
   using namespace std;
   double pi = 3.14159265359;

   // Complex numbers can be entered in polar form with
   // modulus and argument parameter inputs but are
   // stored in Cartesian form as real & imag coordinates
   complex <double> c1 ( polar ( 5.0 ) );   // Default argument = 0
   complex <double> c2 ( polar ( 5.0 , pi / 6 ) );
   complex <double> c3 ( polar ( 5.0 , 13 * pi / 6 ) );
   cout << "c1 = polar ( 5.0 ) = " << c1 << endl;
   cout << "c2 = polar ( 5.0 , pi / 6 ) = " << c2 << endl;
   cout << "c3 = polar ( 5.0 , 13 * pi / 6 ) = " << c3 << endl;

   if ( (arg ( c2 ) <= ( arg ( c3 ) + .00000001) ) || 
        (arg ( c2 ) >= ( arg ( c3 ) - .00000001) ) )
      cout << "The complex numbers c2 & c3 have the "
           << "same principal arguments."<< endl;
   else
      cout << "The complex numbers c2 & c3 don't have the "
           << "same principal arguments." << endl;

   // The modulus and argument of a complex number can be recovered
   double absc2 = abs ( c2 );
   double argc2 = arg ( c2 );
   cout << "The modulus of c2 is recovered from c2 using: abs ( c2 ) = "
        << absc2 << endl;
   cout << "Argument of c2 is recovered from c2 using:\n arg ( c2 ) = "
        << argc2 << " radians, which is " << argc2 * 180 / pi
        << " degrees." << endl;

   // The norm of a complex number is the square of its modulus
   double normc2 = norm ( c2 );
   double sqrtnormc2 = sqrt ( normc2 );
   cout << "The norm of c2 given by: norm ( c2 ) = " << normc2 << endl;
   cout << "The modulus of c2 is the square root of the norm: "
        << "sqrt ( normc2 ) = " << sqrtnormc2 << "."; 
}
c1 = polar ( 5.0 ) = (5,0)
c2 = polar ( 5.0 , pi / 6 ) = (4.33013,2.5)
c3 = polar ( 5.0 , 13 * pi / 6 ) = (4.33013,2.5)
The complex numbers c2 & c3 have the same principal arguments.
The modulus of c2 is recovered from c2 using: abs ( c2 ) = 5
Argument of c2 is recovered from c2 using:
 arg ( c2 ) = 0.523599 radians, which is 30 degrees.
The norm of c2 given by: norm ( c2 ) = 25
The modulus of c2 is the square root of the norm: sqrt ( normc2 ) = 5.

Requirements

Header: <complex>

Namespace: std

Show: