Was this page helpful?
Your feedback about this content is important. Let us know what you think.
Additional feedback?
1500 characters remaining
Export (0) Print
Expand All
abs
Expand Minimize
Important This document may not represent best practices for current development, links to downloads and other resources may no longer be valid. Current recommended version can be found here.

Predicate Version of adjacent_find 

Illustrates how to use the predicate version of the adjacent_find Standard Template Library (STL) function in Visual C++.


template<class ForwardIterator, class BinaryPredicate> inline
   ForwardIterator adjacent_find(
      ForwardIterator First,
      ForwardIterator Last,
      BinaryPredicate Binary_Pred
   ) ;

NoteNote

The class/parameter names in the prototype do not match the version in the header file. Some have been modified to improve readability.

The adjacent_find algorithm finds consecutive pairs of matching elements in a sequence. adjacent_find returns an iterator referencing the first consecutive matching element in the range [First, Last), or last if there are no such elements. Comparison is done using the binary_pred function in this version of the algorithm. The binary_pred function can be any user-defined function. You could also use one of the binary function objects provided by the STL.

// adfind2.cpp
// compile with: /EHsc
// Illustrates how to use the predicate version of
// adjacent_find function.
//
// Functions:
//   adjacent_find  - Locate a consecutive sequence in a range.

// disable warning C4786: symbol greater than 255 character,
// okay to ignore
#pragma warning(disable: 4786)

#include <iostream>
#include <algorithm>
#include <functional>
#include <string>
#include <vector>

using namespace std;


int main()
{
    const int VECTOR_SIZE = 5 ;

    // Define a template class vector of strings
    typedef vector<string > StringVector ;

    //Define an iterator for template class vector of strings
    typedef StringVector::iterator StringVectorIt ;

    StringVector NamesVect(VECTOR_SIZE) ;   //vector containing names

    StringVectorIt location ;   // stores the position for the
                                 // first pair of matching
                                 // consecutive elements.

    StringVectorIt start, end, it ;

    // Initialize vector NamesVect
    NamesVect[0] = "Aladdin" ;
    NamesVect[1] = "Jasmine" ;
    NamesVect[2] = "Mickey" ;
    NamesVect[3] = "Minnie" ;
    NamesVect[4] = "Goofy" ;

    start = NamesVect.begin() ;   // location of first
                                  // element of NamesVect

    end = NamesVect.end() ;       // one past the location
                                  // last element of NamesVect

    // print content of NamesVect
    cout << "NamesVect { " ;
    for(it = start; it != end; it++)
        cout << *it << ", " ;
    cout << " }\n" << endl ;

    // Find the first name that is lexicographically greater
    // than the following name in the range [first, last + 1).
    // This version performs matching using binary predicate
    // function greater<string>
    location = adjacent_find(start, end, greater<string>()) ;

    // print the first pair of strings such that the first name is
    // lexicographically greater than the second.
    if (location != end)
        cout << "(" << *location << ", " << *(location + 1) << ")"
        << " the first pair of strings in NamesVect such that\n"
        << "the first name is lexicographically greater than "
        << "the second\n" << endl ;
    else
        cout << "No consecutive pair of strings found such that\n"
        << "the first name is lexicographically greater than "
        << "the second\n" << endl ;

}

NamesVect { Aladdin, Jasmine, Mickey, Minnie, Goofy,  }

(Minnie, Goofy) the first pair of strings in NamesVect such that
the first name is lexicographically greater than the second

Header: <algorithm>

Community Additions

ADD
Show:
© 2015 Microsoft