Matrix3DProjection-Klasse

Matrix3DProjection Class

Führt eine Matrix3D-Projektion bei einem Objekt aus.

Vererbung

Object
  DependencyObject
    Projection
      Matrix3DProjection

Syntax


public sealed class Matrix3DProjection : Projection


<Matrix3DProjection .../>

Attribute

[ContentProperty("Name=ProjectionMatrix")]
[MarshalingBehavior(Agile)]
[Threading(Both)]
[Version(0x06020000)]
[WebHostHidden()]

Member

Matrix3DProjectionKlasse hat diese Membertypen:

Konstruktoren

Matrix3DProjectionKlasse hat diese Konstruktoren.

KonstruktorBeschreibung
Matrix3DProjection Initializes a new instance of a Matrix3DProjection class.

 

Methoden

The Matrix3DProjection Klasse hat diese Methoden. Es erbt auch Methoden von Object Klasse.

MethodeBeschreibung
ClearValue Clears the local value of a dependency property. (Geerbt von DependencyObject)
GetAnimationBaseValue Returns any base value established for a dependency property, which would apply in cases where an animation is not active. (Geerbt von DependencyObject)
GetValue Returns the current effective value of a dependency property from a DependencyObject. (Geerbt von DependencyObject)
ReadLocalValue Returns the local value of a dependency property, if a local value is set. (Geerbt von DependencyObject)
SetValue Sets the local value of a dependency property on a DependencyObject. (Geerbt von DependencyObject)

 

Eigenschaften

Der Matrix3DProjectionKlasse hat diese Eigenschaften.

EigenschaftZugriffstypBeschreibung

Dispatcher

SchreibgeschütztGets the CoreDispatcher that this object is associated with. (Geerbt von DependencyObject)

ProjectionMatrix

Lese-/SchreibzugriffGets or sets the Matrix3D that is used for the projection that is applied to the object.

ProjectionMatrixProperty

SchreibgeschütztIdentifies the ProjectionMatrix dependency property.

 

Beispiele

In diesem Beispiel wird das Bild mithilfe einer einfachen Matrix3D-Matrix in der X- und Y-Richtung transformiert, wenn Sie auf das Bild klicken.


<!-- When you click on the image, the projection is applied. -->
<Image PointerPressed="ApplyProjection" x:Name="BeachImage" Source="guy_by_the_beach.jpg"
       Width="200"/>



private void ApplyProjection(Object sender, PointerRoutedEventArgs e)
{
    Matrix3D m = new Matrix3D();

    // This matrix simply translates the image 100 pixels
    // down and 100 pixels right.
    m.M11 = 1.0; m.M12 = 0.0; m.M13 = 0.0; m.M14 = 0.0;
    m.M21 = 0.0; m.M22 = 1.0; m.M23 = 0.0; m.M24 = 0.0;
    m.M31 = 0.0; m.M32 = 0.0; m.M33 = 1.0; m.M34 = 0.0;
    m.OffsetX = 100; m.OffsetY = 100; m.OffsetZ = 0; m.M44 = 1.0;

    Matrix3DProjection m3dProjection = new Matrix3DProjection();
    m3dProjection.ProjectionMatrix = m;

    BeachImage.Projection = m3dProjection;

}


Sie können auch eine Matrix3DProjection auf ein Objekt mithilfe von XAML anwenden. Dieses Beispiel veranschaulicht die Anwendung der gleichen Transformation wie im vorherigen Beispiel mit XAML anstelle von Verfahrenscode.


<Image Source="guy_by_the_beach.jpg">
    <Image.Projection>
        <Matrix3DProjection  ProjectionMatrix="2, 0, 0, 0,
                                              0, 2, 0, 0,
                                              0, 0, 1, 0,
                                              100, 100, 0, 1"/>
    </Image.Projection>
</Image>


Sie können Matrizen multiplizieren, um komplexere Effekte zu erstellen. In diesem Beispiel werden mehrere Matrix3D-Matrizen verwendet, die eine 3D-Transformation auf ein Bild anwenden, wenn Sie auf das Bild klicken.


<!-- When you click on the image, the projection is applied. -->
<Image PointerPressed="ApplyProjection" x:Name="BeachImage" Source="guy_by_the_beach.jpg" 
       Width="200"/>



private void ApplyProjection(Object sender, PointerRoutedEventArgs e)
{
    // Translate the image along the negative Z-axis such that it occupies 50% of the
    // vertical field of view.
    double fovY = Math.PI / 2.0;
    double translationZ = -BeachImage.ActualHeight / Math.Tan(fovY / 2.0);
    double theta = 20.0 * Math.PI / 180.0;

    // You can create a 3D effect by creating a number of simple 
    // tranformation Matrix3D matrixes and then multiply them together.
    Matrix3D centerImageAtOrigin = TranslationTransform(
             -BeachImage.ActualWidth / 2.0,
             -BeachImage.ActualHeight / 2.0, 0);
    Matrix3D invertYAxis = CreateScaleTransform(1.0, -1.0, 1.0);
    Matrix3D rotateAboutY = RotateYTransform(theta);
    Matrix3D translateAwayFromCamera = TranslationTransform(0, 0, translationZ);
    Matrix3D perspective = PerspectiveTransformFovRH(fovY,
            LayoutRoot.ActualWidth / LayoutRoot.ActualHeight,   // aspect ratio
            1.0,                                                // near plane
            1000.0);                                            // far plane
    Matrix3D viewport = ViewportTransform(LayoutRoot.ActualWidth, LayoutRoot.ActualHeight);

    Matrix3D m = Matrix3DHelper.Multiply(centerImageAtOrigin,invertYAxis);
    m = Matrix3D.Multiply(m ,rotateAboutY);
    m = Matrix3D.Multiply(m,translateAwayFromCamera);
    m = Matrix3D.Multiply(m,perspective);
    m = Matrix3D.Multiply(m,viewport);

    Matrix3DProjection m3dProjection = new Matrix3DProjection();
    m3dProjection.ProjectionMatrix = m;

    BeachImage.Projection = m3dProjection;
}

private Matrix3D TranslationTransform(double tx, double ty, double tz)
{
    Matrix3D m = new Matrix3D();

    m.M11 = 1.0; m.M12 = 0.0; m.M13 = 0.0; m.M14 = 0.0;
    m.M21 = 0.0; m.M22 = 1.0; m.M23 = 0.0; m.M24 = 0.0;
    m.M31 = 0.0; m.M32 = 0.0; m.M33 = 1.0; m.M34 = 0.0;
    m.OffsetX = tx; m.OffsetY = ty; m.OffsetZ = tz; m.M44 = 1.0;

    return m;
}

private Matrix3D CreateScaleTransform(double sx, double sy, double sz)
{
    Matrix3D m = new Matrix3D();

    m.M11 = sx; m.M12 = 0.0; m.M13 = 0.0; m.M14 = 0.0;
    m.M21 = 0.0; m.M22 = sy; m.M23 = 0.0; m.M24 = 0.0;
    m.M31 = 0.0; m.M32 = 0.0; m.M33 = sz; m.M34 = 0.0;
    m.OffsetX = 0.0; m.OffsetY = 0.0; m.OffsetZ = 0.0; m.M44 = 1.0;

    return m;
}

private Matrix3D RotateYTransform(double theta)
{
    double sin = Math.Sin(theta);
    double cos = Math.Cos(theta);

    Matrix3D m = new Matrix3D();

    m.M11 = cos; m.M12 = 0.0; m.M13 = -sin; m.M14 = 0.0;
    m.M21 = 0.0; m.M22 = 1.0; m.M23 = 0.0; m.M24 = 0.0;
    m.M31 = sin; m.M32 = 0.0; m.M33 = cos; m.M34 = 0.0;
    m.OffsetX = 0.0; m.OffsetY = 0.0; m.OffsetZ = 0.0; m.M44 = 1.0;

    return m;
}

private Matrix3D RotateZTransform(double theta)
{
    double cos = Math.Cos(theta);
    double sin = Math.Sin(theta);

    Matrix3D m = new Matrix3D();
    m.M11 = cos; m.M12 = sin; m.M13 = 0.0; m.M14 = 0.0;
    m.M21 = -sin; m.M22 = cos; m.M23 = 0.0; m.M24 = 0.0;
    m.M31 = 0.0; m.M32 = 0.0; m.M33 = 1.0; m.M34 = 0.0;
    m.OffsetX = 0.0; m.OffsetY = 0.0; m.OffsetZ = 0.0; m.M44 = 1.0;
    return m;
}

private Matrix3D PerspectiveTransformFovRH(double fieldOfViewY, double aspectRatio, double zNearPlane, double zFarPlane)
{
    double height = 1.0 / Math.Tan(fieldOfViewY / 2.0);
    double width = height / aspectRatio;
    double d = zNearPlane - zFarPlane;

    Matrix3D m = new Matrix3D();
    m.M11 = width; m.M12 = 0; m.M13 = 0; m.M14 = 0;
    m.M21 = 0; m.M22 = height; m.M23 = 0; m.M24 = 0;
    m.M31 = 0; m.M32 = 0; m.M33 = zFarPlane / d; m.M34 = -1;
    m.OffsetX = 0; m.OffsetY = 0; m.OffsetZ = zNearPlane * zFarPlane / d; m.M44 = 0;

    return m;
}

private Matrix3D ViewportTransform(double width, double height)
{
    Matrix3D m = new Matrix3D();

    m.M11 = width / 2.0; m.M12 = 0.0; m.M13 = 0.0; m.M14 = 0.0;
    m.M21 = 0.0; m.M22 = -height / 2.0; m.M23 = 0.0; m.M24 = 0.0;
    m.M31 = 0.0; m.M32 = 0.0; m.M33 = 1.0; m.M34 = 0.0;
    m.OffsetX = width / 2.0; m.OffsetY = height / 2.0; m.OffsetZ = 0.0; m.M44 = 1.0;

    return m;
}


Anforderungen

Mindestens unterstützter Client

Windows 8 [Nur Windows Store-Apps]

Mindestens unterstützter Server

Windows Server 2012 [Nur Windows Store-Apps]

Namespace

Windows.UI.Xaml.Media
Windows::UI::Xaml::Media [C++]

Metadaten

Windows.winmd

Siehe auch

Projection

 

 

Anzeigen:
© 2017 Microsoft