Export (0) Print
Expand All

Stack<T>.GetEnumerator Method

Returns an enumerator for the Stack<T>.

Namespace:  System.Collections.Generic
Assembly:  System (in System.dll)

public Stack<(Of <(<'T>)>)>..::..Enumerator GetEnumerator()

The foreach statement of the C# language (for each in C++, For Each in Visual Basic) hides the complexity of the enumerators. Therefore, using foreach is recommended, instead of directly manipulating the enumerator.

Enumerators can be used to read the data in the collection, but they cannot be used to modify the underlying collection.

Initially, the enumerator is positioned before the first element in the collection. At this position, Current is undefined. Therefore, you must call MoveNext to advance the enumerator to the first element of the collection before reading the value of Current.

Current returns the same object until MoveNext is called. MoveNext sets Current to the next element.

If MoveNext passes the end of the collection, the enumerator is positioned after the last element in the collection and MoveNext returns false. When the enumerator is at this position, subsequent calls to MoveNext also return false. If the last call to MoveNext returned false, Current is undefined. You cannot set Current to the first element of the collection again; you must create a new enumerator instance instead.

An enumerator remains valid as long as the collection remains unchanged. If changes are made to the collection, such as adding, modifying, or deleting elements, the enumerator is irrecoverably invalidated and its behavior is undefined.

The enumerator does not have exclusive access to the collection; therefore, enumerating through a collection is intrinsically not a thread-safe procedure. To guarantee thread safety during enumeration, you can lock the collection during the entire enumeration. To allow the collection to be accessed by multiple threads for reading and writing, you must implement your own synchronization.

Default implementations of collections in System.Collections.Generic are not synchronized.

This method is an O(1) operation.

The following code example demonstrates that the Stack<T> generic class is enumerable. The foreach statement (For Each in Visual Basic, for each in C++) is used to enumerate the queue.

The code example creates a stack of strings with default capacity and uses the Push method to push five strings onto the stack. The elements of the stack are enumerated, which does not change the state of the stack. The Pop method is used to pop the first string off the stack. The Peek method is used to look at the next item on the stack, and then the Pop method is used to pop it off.

The ToArray method is used to create an array and copy the stack elements to it, then the array is passed to the Stack<T> constructor that takes IEnumerable<T>, creating a copy of the stack with the order of the elements reversed. The elements of the copy are displayed.

An array twice the size of the stack is created, and the CopyTo method is used to copy the array elements beginning at the middle of the array. The Stack<T> constructor is used again to create a copy of the stack with the order of elements reversed; thus, the three null elements are at the end.

The Contains method is used to show that the string "four" is in the first copy of the stack, after which the Clear method clears the copy and the Count property shows that the stack is empty.

using System;
using System.Collections.Generic;

class Example
    public static void Main()
        Stack<string> numbers = new Stack<string>();

        // A stack can be enumerated without disturbing its contents.
        foreach( string number in numbers )

        Console.WriteLine("\nPopping '{0}'", numbers.Pop());
        Console.WriteLine("Peek at next item to destack: {0}", 
        Console.WriteLine("Popping '{0}'", numbers.Pop());

        // Create a copy of the stack, using the ToArray method and the
        // constructor that accepts an IEnumerable<T>.
        Stack<string> stack2 = new Stack<string>(numbers.ToArray());

        Console.WriteLine("\nContents of the first copy:");
        foreach( string number in stack2 )

        // Create an array twice the size of the stack and copy the
        // elements of the stack, starting at the middle of the 
        // array. 
        string[] array2 = new string[numbers.Count * 2];
        numbers.CopyTo(array2, numbers.Count);

        // Create a second stack, using the constructor that accepts an
        // IEnumerable(Of T).
        Stack<string> stack3 = new Stack<string>(array2);

        Console.WriteLine("\nContents of the second copy, with duplicates and nulls:");
        foreach( string number in stack3 )

        Console.WriteLine("\nstack2.Contains(\"four\") = {0}", 

        Console.WriteLine("\nstack2.Count = {0}", stack2.Count);

/* This code example produces the following output:


Popping 'five'
Peek at next item to destack: four
Popping 'four'

Contents of the first copy:

Contents of the second copy, with duplicates and nulls:

stack2.Contains("four") = False


stack2.Count = 0

.NET Framework

Supported in: 4, 3.5, 3.0, 2.0

.NET Framework Client Profile

Supported in: 4, 3.5 SP1

Portable Class Library

Supported in: Portable Class Library

Windows 7, Windows Vista SP1 or later, Windows XP SP3, Windows XP SP2 x64 Edition, Windows Server 2008 (Server Core not supported), Windows Server 2008 R2 (Server Core supported with SP1 or later), Windows Server 2003 SP2

The .NET Framework does not support all versions of every platform. For a list of the supported versions, see .NET Framework System Requirements.

Community Additions

© 2014 Microsoft