Information
The topic you requested is included in another documentation set. For convenience, it's displayed below. Choose Switch to see the topic in its original location.

Introduction to the C# Language and the .NET Framework 

C# is an elegant and type-safe object-oriented language that enables developers to build a wide range of secure and robust applications that run on the .NET Framework. You can use C# to create traditional Windows client applications, XML Web services, distributed components, client-server applications, database applications, and much, much more. Microsoft Visual C# 2005 provides an advanced code editor, convenient user interface designers, integrated debugger, and many other tools to facilitate rapid application development based on version 2.0 of the C# language and the .NET Framework.

NoteNote

The Visual C# documentation assumes that you have an understanding of basic programming concepts. If you are a complete beginner, you might want to explore Visual C# Express Edition, which is available on the Web. You can also take advantage of any of several excellent books and Web resources on C# to learn practical programming skills.

C# Language

C# syntax is highly expressive, yet with less than 90 keywords, it is also simple and easy to learn. The curly-brace syntax of C# will be instantly recognizable to anyone familiar with C, C++ or Java. Developers who know any of these languages are typically able to begin working productively in C# within a very short time. C# syntax simplifies many of the complexities of C++ while providing powerful features such as nullable value types, enumerations, delegates, anonymous methods and direct memory access, which are not found in Java. C# also supports generic methods and types, which provide increased type safety and performance, and iterators, which enable implementers of collection classes to define custom iteration behaviors that are simple to use by client code.

As an object-oriented language, C# supports the concepts of encapsulation, inheritance and polymorphism. All variables and methods, including the Main method, the application's entry point, are encapsulated within class definitions. A class may inherit directly from one parent class, but it may implement any number of interfaces. Methods that override virtual methods in a parent class require the override keyword as a way to avoid accidental redefinition. In C#, a struct is like a lightweight class; it is a stack-allocated type that can implement interfaces but does not support inheritance.

In addition to these basic object-oriented principles, C# facilitates the development of software components through several innovative language constructs, including:

  • Encapsulated method signatures called delegates, which enable type-safe event notifications.

  • Properties, which serve as accessors for private member variables.

  • Attributes, which provide declarative metadata about types at run time.

  • Inline XML documentation comments.

If you need to interact with other Windows software such as COM objects or native Win32 DLLs, you can do this in C# through a process called "Interop." Interop enables C# programs to do just about anything that a native C++ application can do. C# even supports pointers and the concept of "unsafe" code for those cases in which direct memory access is absolutely critical.

The C# build process is simple compared to C and C++ and more flexible than in Java. There are no separate header files, and no requirement that methods and types be declared in a particular order. A C# source file may define any number of classes, structs, interfaces, and events.

The following are additional C# resources:

.NET Framework Platform Architecture

C# programs run on the .NET Framework, an integral component of Windows that includes a virtual execution system called the common language runtime (CLR) and a unified set of class libraries. The CLR is Microsoft's commercial implementation of the common language infrastructure (CLI), an international standard that is the basis for creating execution and development environments in which languages and libraries work together seamlessly.

Source code written in C# is compiled into an intermediate language (IL) that conforms to the CLI specification. The IL code, along with resources such as bitmaps and strings, is stored on disk in an executable file called an assembly, typically with an extension of .exe or .dll. An assembly contains a manifest that provides information on the assembly's types, version, culture, and security requirements.

When the C# program is executed, the assembly is loaded into the CLR, which might take various actions based on the information in the manifest. Then, if the security requirements are met, the CLR performs just in time (JIT) compilation to convert the IL code into native machine instructions. The CLR also provides other services related to automatic garbage collection, exception handling, and resource management. Code that is executed by the CLR is sometimes referred to as "managed code," in contrast to "unmanaged code" which is compiled into native machine language that targets a specific system. The following diagram illustrates the compile-time and run time relationships of C# source code files, the base class libraries, assemblies, and the CLR.

From C# source code to machine execution

Language interoperability is a key feature of the .NET Framework. Because the IL code produced by the C# compiler conforms to the Common Type Specification (CTS), IL code generated from C# can interact with code that was generated from the .NET versions of Visual Basic, Visual C++, Visual J#, or any of more than 20 other CTS-compliant languages. A single assembly may contain multiple modules written in different .NET languages, and the types can reference each other just as if they were written in the same language.

In addition to the run time services, the .NET Framework also includes an extensive library of over 4000 classes organized into namespaces that provide a wide variety of useful functionality for everything from file input and output to string manipulation to XML parsing, to Windows Forms controls. The typical C# application uses the .NET Framework class library extensively to handle common "plumbing" chores.

For more information about the .NET Framework platform, see Overview of the .NET Framework.

See Also

Was this page helpful?
(1500 characters remaining)
Thank you for your feedback

Community Additions

Show:
© 2014 Microsoft