EmissiveMaterial Class

Applies a Brush to a 3-D model so that it participates in lighting calculations as if the Material were emitting light equal to the color of the Brush.

Namespace:  System.Windows.Media.Media3D
Assembly:  PresentationCore (in PresentationCore.dll)
XMLNS for XAML: http://schemas.microsoft.com/winfx/2006/xaml/presentation, http://schemas.microsoft.com/netfx/2007/xaml/presentation

public ref class EmissiveMaterial sealed : public Material
<EmissiveMaterial .../>

The EmissiveMaterial type exposes the following members.

  NameDescription
Public methodEmissiveMaterial()Initializes a new instance of the EmissiveMaterial class.
Public methodEmissiveMaterial(Brush)Initializes a new instance of the EmissiveMaterial class with the specified brush.
Top

  NameDescription
Public propertyBrushGets or sets the Brush applied by the EmissiveMaterial.
Public propertyCanFreezeGets a value that indicates whether the object can be made unmodifiable. (Inherited from Freezable.)
Public propertyColorGets or sets the color filter for the material's texture.
Public propertyDependencyObjectTypeGets the DependencyObjectType that wraps the CLR type of this instance.  (Inherited from DependencyObject.)
Public propertyDispatcherGets the Dispatcher this DispatcherObject is associated with. (Inherited from DispatcherObject.)
Public propertyHasAnimatedPropertiesGets a value that indicates whether one or more AnimationClock objects is associated with any of this object's dependency properties. (Inherited from Animatable.)
Public propertyIsFrozenGets a value that indicates whether the object is currently modifiable. (Inherited from Freezable.)
Public propertyIsSealedGets a value that indicates whether this instance is currently sealed (read-only). (Inherited from DependencyObject.)
Top

  NameDescription
Public methodApplyAnimationClock(DependencyProperty, AnimationClock)Applies an AnimationClock to the specified DependencyProperty. If the property is already animated, the SnapshotAndReplace handoff behavior is used. (Inherited from Animatable.)
Public methodApplyAnimationClock(DependencyProperty, AnimationClock, HandoffBehavior)Applies an AnimationClock to the specified DependencyProperty. If the property is already animated, the specified HandoffBehavior is used. (Inherited from Animatable.)
Public methodBeginAnimation(DependencyProperty, AnimationTimeline)Applies an animation to the specified DependencyProperty. The animation is started when the next frame is rendered. If the specified property is already animated, the SnapshotAndReplace handoff behavior is used. (Inherited from Animatable.)
Public methodBeginAnimation(DependencyProperty, AnimationTimeline, HandoffBehavior)Applies an animation to the specified DependencyProperty. The animation is started when the next frame is rendered. If the specified property is already animated, the specified HandoffBehavior is used. (Inherited from Animatable.)
Public methodCheckAccessDetermines whether the calling thread has access to this DispatcherObject. (Inherited from DispatcherObject.)
Public methodClearValue(DependencyProperty)Clears the local value of a property. The property to be cleared is specified by a DependencyProperty identifier. (Inherited from DependencyObject.)
Public methodClearValue(DependencyPropertyKey)Clears the local value of a read-only property. The property to be cleared is specified by a DependencyPropertyKey. (Inherited from DependencyObject.)
Public methodCloneCreates a modifiable clone of this EmissiveMaterial, making deep copies of this object's values. When copying dependency properties, this method copies resource references and data bindings (but they might no longer resolve) but not animations or their current values.
Public methodCloneCurrentValueCreates a modifiable clone of this EmissiveMaterial object, making deep copies of this object's current values. Resource references, data bindings, and animations are not copied, but their current values are.
Public methodCoerceValueCoerces the value of the specified dependency property. This is accomplished by invoking any CoerceValueCallback function specified in property metadata for the dependency property as it exists on the calling DependencyObject. (Inherited from DependencyObject.)
Public methodEqualsDetermines whether a provided DependencyObject is equivalent to the current DependencyObject. (Inherited from DependencyObject.)
Public methodFreeze()Makes the current object unmodifiable and sets its IsFrozen property to true. (Inherited from Freezable.)
Public methodGetAnimationBaseValueReturns the non-animated value of the specified DependencyProperty. (Inherited from Animatable.)
Public methodGetAsFrozenCreates a frozen copy of the Freezable, using base (non-animated) property values. Because the copy is frozen, any frozen sub-objects are copied by reference. (Inherited from Freezable.)
Public methodGetCurrentValueAsFrozenCreates a frozen copy of the Freezable using current property values. Because the copy is frozen, any frozen sub-objects are copied by reference. (Inherited from Freezable.)
Public methodGetHashCodeGets a hash code for this DependencyObject. (Inherited from DependencyObject.)
Public methodGetLocalValueEnumeratorCreates a specialized enumerator for determining which dependency properties have locally set values on this DependencyObject. (Inherited from DependencyObject.)
Public methodGetTypeGets the Type of the current instance. (Inherited from Object.)
Public methodGetValueReturns the current effective value of a dependency property on this instance of a DependencyObject. (Inherited from DependencyObject.)
Public methodInvalidatePropertyRe-evaluates the effective value for the specified dependency property (Inherited from DependencyObject.)
Public methodReadLocalValueReturns the local value of a dependency property, if it exists. (Inherited from DependencyObject.)
Public methodSetCurrentValueSets the value of a dependency property without changing its value source. (Inherited from DependencyObject.)
Public methodSetValue(DependencyProperty, Object)Sets the local value of a dependency property, specified by its dependency property identifier. (Inherited from DependencyObject.)
Public methodSetValue(DependencyPropertyKey, Object)Sets the local value of a read-only dependency property, specified by the DependencyPropertyKey identifier of the dependency property. (Inherited from DependencyObject.)
Protected methodShouldSerializePropertyReturns a value that indicates whether serialization processes should serialize the value for the provided dependency property. (Inherited from DependencyObject.)
Public methodToString() Creates a string representation of the object based on the current culture. (Inherited from Material.)
Public methodToString(IFormatProvider) Creates a string representation of the Material. (Inherited from Material.)
Public methodVerifyAccessEnforces that the calling thread has access to this DispatcherObject. (Inherited from DispatcherObject.)
Top

  NameDescription
Public eventChangedOccurs when the Freezable or an object it contains is modified. (Inherited from Freezable.)
Top

  NameDescription
Public fieldStatic memberBrushPropertyIdentifies the Brush dependency property.
Public fieldStatic memberColorPropertyIdentifies the Color dependency property.
Top

  NameDescription
Explicit interface implemetationPrivate methodIFormattable::ToStringFormats the value of the current instance using the specified format. (Inherited from Material.)
Top

EmissiveMaterial adds its color to any existing material applied to the model.

The following example shows how to use EmissiveMaterial to add color to an existing Material equal to the color of the EmissiveMaterial's brush. The code below shows DiffuseMaterial and EmissiveMaterial applied in combination to add blue to the DiffuseMaterial's appearance.

<!-- The material applied to the 3D object is made up of a DiffuseMaterial (gradient brush) with 
     an EmissiveMaterial layered on top (blue SolidColorBrush). The EmissiveMaterial adds blue to the gradient. -->
<GeometryModel3D.Material>
  <MaterialGroup>
    <DiffuseMaterial>
      <DiffuseMaterial.Brush>
        <LinearGradientBrush StartPoint="0,0.5" EndPoint="1,0.5">
          <LinearGradientBrush.GradientStops>
            <GradientStop Color="Yellow" Offset="0" />
            <GradientStop Color="Red" Offset="0.25" />
            <GradientStop Color="Blue" Offset="0.75" />
            <GradientStop Color="LimeGreen" Offset="1" />
          </LinearGradientBrush.GradientStops>
        </LinearGradientBrush>
      </DiffuseMaterial.Brush>
    </DiffuseMaterial>
    <EmissiveMaterial>
      <EmissiveMaterial.Brush>
        <SolidColorBrush x:Name="mySolidColorBrush" Color="Blue" />
      </EmissiveMaterial.Brush>
    </EmissiveMaterial>
  </MaterialGroup>
</GeometryModel3D.Material>

In procedural code:

No code example is currently available or this language may not be supported.

The following code shows the entire sample in XAML.

<Page xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
  xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" >
  <DockPanel>
    <Viewbox>
      <Canvas Width="321" Height="201">

        <!-- The Viewport3D provides a rendering surface for 3-D visual content. -->
        <Viewport3D ClipToBounds="True" Width="150" Height="150"
          Canvas.Left="0" Canvas.Top="10">

          <!-- Defines the camera used to view the 3D object. -->
          <Viewport3D.Camera>
            <PerspectiveCamera x:Name="myPerspectiveCamera" Position="0,0,2" LookDirection="0,0,-1" 
             FieldOfView="60" />
          </Viewport3D.Camera>

          <!-- The ModelVisual3D children contain the 3D models -->
          <Viewport3D.Children>

            <!-- This ModelVisual3D defines the lights cast in the scene. Without light, the
                 3D object cannot be seen. -->
            <ModelVisual3D>
              <ModelVisual3D.Content>
                <DirectionalLight Color="#FFFFFF" Direction="-0.612372,-0.5,-0.612372" />
              </ModelVisual3D.Content>
            </ModelVisual3D>
            <ModelVisual3D>
              <ModelVisual3D.Content>
                <GeometryModel3D>

                  <!-- The geometry specifes the shape of the 3D plane. In this case, a flat sheet is created. -->
                  <GeometryModel3D.Geometry>
                    <MeshGeometry3D
                     TriangleIndices="0,1,2 3,4,5 "
                     Normals="0,0,1 0,0,1 0,0,1 0,0,1 0,0,1 0,0,1 "
                     TextureCoordinates="0,0 1,0 1,1 1,1 0,1 0,0 "
                     Positions="-0.5,-0.5,0.5 0.5,-0.5,0.5 0.5,0.5,0.5 0.5,0.5,0.5 -0.5,0.5,0.5 -0.5,-0.5,0.5 " />
                  </GeometryModel3D.Geometry>
                  <!-- The material applied to the 3D object is made up of a DiffuseMaterial (gradient brush) with 
                       an EmissiveMaterial layered on top (blue SolidColorBrush). The EmissiveMaterial adds blue to the gradient. -->
                  <GeometryModel3D.Material>
                    <MaterialGroup>
                      <DiffuseMaterial>
                        <DiffuseMaterial.Brush>
                          <LinearGradientBrush StartPoint="0,0.5" EndPoint="1,0.5">
                            <LinearGradientBrush.GradientStops>
                              <GradientStop Color="Yellow" Offset="0" />
                              <GradientStop Color="Red" Offset="0.25" />
                              <GradientStop Color="Blue" Offset="0.75" />
                              <GradientStop Color="LimeGreen" Offset="1" />
                            </LinearGradientBrush.GradientStops>
                          </LinearGradientBrush>
                        </DiffuseMaterial.Brush>
                      </DiffuseMaterial>
                      <EmissiveMaterial>
                        <EmissiveMaterial.Brush>
                          <SolidColorBrush x:Name="mySolidColorBrush" Color="Blue" />
                        </EmissiveMaterial.Brush>
                      </EmissiveMaterial>
                    </MaterialGroup>
                  </GeometryModel3D.Material>
                  <!-- The Transform specifies how to transform the 3D object. This transform 
                       rotates the object.-->
                  <GeometryModel3D.Transform>
                    <RotateTransform3D>
                      <RotateTransform3D.Rotation>
                        <AxisAngleRotation3D x:Name="myAngleRotation" Axis="0,3,0" Angle="40" />
                      </RotateTransform3D.Rotation>
                    </RotateTransform3D>
                  </GeometryModel3D.Transform>
                </GeometryModel3D>
              </ModelVisual3D.Content>
            </ModelVisual3D>
          </Viewport3D.Children>
        </Viewport3D>
      </Canvas>
    </Viewbox>
  </DockPanel>
</Page>

Below is the entire sample in procedural code.

No code example is currently available or this language may not be supported.

.NET Framework

Supported in: 4.5.2, 4.5.1, 4.5, 4, 3.5, 3.0

.NET Framework Client Profile

Supported in: 4, 3.5 SP1

Windows 8.1, Windows Server 2012 R2, Windows 8, Windows Server 2012, Windows 7, Windows Vista SP2, Windows Server 2008 (Server Core Role not supported), Windows Server 2008 R2 (Server Core Role supported with SP1 or later; Itanium not supported)

The .NET Framework does not support all versions of every platform. For a list of the supported versions, see .NET Framework System Requirements.

Any public static (Shared in Visual Basic) members of this type are thread safe. Any instance members are not guaranteed to be thread safe.
Was this page helpful?
(1500 characters remaining)
Thank you for your feedback
Show:
© 2014 Microsoft