0 out of 1 rated this helpful - Rate this topic

IComparable<T> Interface

Defines a generalized comparison method that a value type or class implements to create a type-specific comparison method for ordering instances.

Namespace:  System
Assembly:  mscorlib (in mscorlib.dll)
generic<typename T>
public interface class IComparable

Type Parameters

in T

The type of objects to compare.

This type parameter is contravariant. That is, you can use either the type you specified or any type that is less derived. For more information about covariance and contravariance, see Covariance and Contravariance in Generics.

The IComparable<T> type exposes the following members.

  NameDescription
Public methodSupported by the XNA FrameworkSupported by Portable Class LibraryCompareToCompares the current object with another object of the same type.
Top

This interface is implemented by types whose values can be ordered; for example, the numeric and string classes. A value type or class implements the CompareTo(T) method to create a type-specific comparison method suitable for purposes such as sorting.

The IComparable<T> interface defines the CompareTo(T) method, which determines the sort order of instances of the implementing type. The IEquatable<T> interface defines the Equals method, which determines the equality of instances of the implementing type.

The implementation of the CompareTo(T) method must return an Int32 that has one of three values, as shown in the following table.

Value

Meaning

Less than zero

This object is less than the object specified by the CompareTo method.

Zero

This object is equal to the method parameter.

Greater than zero

This object is greater than the method parameter.

The IComparable<T> interface provides a strongly typed comparison method for ordering members of a generic collection object. Because of this, it is usually not called directly from developer code. Instead, it is called automatically by methods such as List<T>::Sort() and Add.

Notes to Implementers

Replace the type parameter of the IComparable<T> interface with the type that is implementing this interface.

The following code example illustrates the implementation of IComparable for a simple Temperature object. The example creates a SortedList<TKey, TValue> collection of strings with Temperature object keys, and adds several pairs of temperatures and strings to the list out of sequence. In the call to the Add method, the SortedList<TKey, TValue> collection uses the IComparable<T> implementation to sort the list entries, which are then displayed in order of increasing temperature.


#using <System.dll>

using namespace System;
using namespace System::Collections::Generic;

public ref class Temperature: public IComparable<Temperature^> {

protected:
   // The underlying temperature value.
   Double m_value;

public:
   // Implement the generic CompareTo method with the Temperature class 
   // as the Type parameter. 
   virtual Int32 CompareTo( Temperature^ other ) {

      // If other is not a valid object reference, this instance 
      // is greater.
      if (other == nullptr) return 1;

      // The temperature comparison depends on the comparison of the
      // the underlying Double values. 
      return m_value.CompareTo( other->m_value );
   }

   property Double Celsius {
      Double get() {
         return m_value + 273.15;
      }
   }

   property Double Kelvin {
      Double get() {
         return m_value;
      }
      void set( Double value ) {
         if (value < 0)
            throw gcnew ArgumentException("Temperature cannot be less than absolute zero.");
         else
            m_value = value;
      }
   }

   Temperature(Double kelvins) {
      this->Kelvin = kelvins;
   }
};

int main() {
   SortedList<Temperature^, String^>^ temps = 
      gcnew SortedList<Temperature^, String^>();

   // Add entries to the sorted list, out of order.
   temps->Add(gcnew Temperature(2017.15), "Boiling point of Lead");
   temps->Add(gcnew Temperature(0), "Absolute zero");
   temps->Add(gcnew Temperature(273.15), "Freezing point of water");
   temps->Add(gcnew Temperature(5100.15), "Boiling point of Carbon");
   temps->Add(gcnew Temperature(373.15), "Boiling point of water");
   temps->Add(gcnew Temperature(600.65), "Melting point of Lead");

   for each( KeyValuePair<Temperature^, String^>^ kvp in temps )
   {
      Console::WriteLine("{0} is {1} degrees Celsius.", kvp->Value, kvp->Key->Celsius);
   }
}
/* The example displays the following output:
      Absolute zero is 273.15 degrees Celsius.
      Freezing point of water is 546.3 degrees Celsius.
      Boiling point of water is 646.3 degrees Celsius.
      Melting point of Lead is 873.8 degrees Celsius.
      Boiling point of Lead is 2290.3 degrees Celsius.
      Boiling point of Carbon is 5373.3 degrees Celsius.
*/


.NET Framework

Supported in: 4, 3.5, 3.0, 2.0

.NET Framework Client Profile

Supported in: 4, 3.5 SP1

Portable Class Library

Supported in: Portable Class Library

Windows 7, Windows Vista SP1 or later, Windows XP SP3, Windows XP SP2 x64 Edition, Windows Server 2008 (Server Core not supported), Windows Server 2008 R2 (Server Core supported with SP1 or later), Windows Server 2003 SP2

The .NET Framework does not support all versions of every platform. For a list of the supported versions, see .NET Framework System Requirements.
Did you find this helpful?
(1500 characters remaining)
Thank you for your feedback

Community Additions

ADD
Show:
© 2014 Microsoft. All rights reserved.