search_n

Searches for the first subsequence in a range that of a specified number of elements having a particular value or a relation to that value as specified by a binary predicate.

template<class ForwardIterator1, class Diff2, class Type>
   ForwardIterator1 search_n(
      ForwardIterator1 _First1, 
      ForwardIterator1 _Last1,
      Diff2 _Count, 
      const Type& _Val
   );
template<class ForwardIterator1, class Diff2, class Type, class BinaryPredicate>
   ForwardIterator1 search_n(
      ForwardIterator1 _First1, 
      ForwardIterator1 _Last1,
      Diff2 _Count, 
      const Type& _Val,
      BinaryPredicate _Comp
   );

_First1

A forward iterator addressing the position of the first element in the range to be searched.

_Last1

A forward iterator addressing the position one past the final element in the range to be searched.

_Count

The size of the subsequence being searched for.

_Val

The value of the elements in the sequence being searched for.

_Comp

User-defined predicate function object that defines the condition to be satisfied if two elements are to be taken as equivalent. A binary predicate takes two arguments and returns true when satisfied and false when not satisfied.

A forward iterator addressing the position of the first element of the first subsequence that matches the specified sequence or that is equivalent in a sense specified by a binary predicate.

The operator== used to determine the match between an element and the specified value must impose an equivalence relation between its operands.

The range referenced must be valid; all pointers must be dereferenceable and within the sequence the last position is reachable from the first by incrementation.

Complexity is linear with respect to the size of the searched.

// alg_search_n.cpp
// compile with: /EHsc
#include <vector>
#include <list>
#include <algorithm>
#include <iostream>

// Return whether second element is 1/2 of the first
bool one_half ( int elem1, int elem2 )
{
   return elem1 == 2 * elem2;
}

int main( ) 
{
   using namespace std;
   vector <int> v1, v2;
   vector <int>::iterator Iter1;

   int i;
   for ( i = 0 ; i <= 5 ; i++ )
   {
      v1.push_back( 5 * i );
   }

   for ( i = 0 ; i <= 2 ; i++ )
   {
      v1.push_back( 5  );
   }

   for ( i = 0 ; i <= 5 ; i++ )
   {
      v1.push_back( 5 * i );
   }

   for ( i = 0 ; i <= 2 ; i++ )
   {
      v1.push_back( 10  );
   }

   cout << "Vector v1 = ( " ;
   for ( Iter1 = v1.begin( ) ; Iter1 != v1.end( ) ; Iter1++ )
      cout << *Iter1 << " ";
   cout << ")" << endl;

   // Searching v1 for first match to (5 5 5) under identity
   vector <int>::iterator result1;
   result1 = search_n ( v1.begin( ), v1.end( ), 3, 5 );

   if ( result1 == v1.end( ) )
      cout << "There is no match for a sequence ( 5 5 5 ) in v1."
           << endl;
   else
      cout << "There is at least one match of a sequence ( 5 5 5 )"
           << "\n in v1 and the first one begins at "
           << "position "<< result1 - v1.begin( ) << "." << endl;

   // Searching v1 for first match to (5 5 5) under one_half
   vector <int>::iterator result2;
   result2 = search_n (v1.begin( ), v1.end( ), 3, 5, one_half );

   if ( result2 == v1.end( ) )
      cout << "There is no match for a sequence ( 5 5 5 ) in v1"
           << " under the equivalence predicate one_half." << endl;
   else
      cout << "There is a match of a sequence ( 5 5 5 ) "
           << "under the equivalence\n predicate one_half "
           << "in v1 and the first one begins at "
           << "position "<< result2 - v1.begin( ) << "." << endl;
}
Vector v1 = ( 0 5 10 15 20 25 5 5 5 0 5 10 15 20 25 10 10 10 )
There is at least one match of a sequence ( 5 5 5 )
 in v1 and the first one begins at position 6.
There is a match of a sequence ( 5 5 5 ) under the equivalence
 predicate one_half in v1 and the first one begins at position 15.

Header: <algorithm>

Namespace: std

Was this page helpful?
(1500 characters remaining)
Thank you for your feedback
Show:
© 2014 Microsoft