Export (0) Print
Expand All

Random.Sample Method

Returns a random floating-point number between 0.0 and 1.0.

Namespace:  System
Assembly:  mscorlib (in mscorlib.dll)

protected virtual double Sample()

Return Value

Type: System.Double
A double-precision floating point number greater than or equal to 0.0, and less than 1.0.

To produce a different random distribution or a different random number generator principle, derive a class from the Random class and override the Sample method.

Important noteImportant

The Sample method is protected, which means that it is accessible only within the Random class and its derived classes. To generate a random number between 0 and 1 from a Random instance, call the NextDouble method.

Notes to Inheritors

Starting with the .NET Framework version 2.0, if you derive a class from Random and override the Sample method, the distribution provided by the derived class implementation of the Sample method is not used in calls to the base class implementation of the following methods:

Instead, the uniform distribution provided by the base Random class is used. This behavior improves the overall performance of the Random class. To modify this behavior to call the implementation of the Sample method in the derived class, you must also override the behavior of these three members. The example provides an illustration.

The following example derives a class from Random and overrides the Sample method to generate a distribution of random numbers. This distribution is different than the uniform distribution generated by the Sample method of the base class.

using System;

// This derived class converts the uniformly distributed random  
// numbers generated by base.Sample( ) to another distribution. 
public class RandomProportional : Random
{
    // The Sample method generates a distribution proportional to the value  
    // of the random numbers, in the range [0.0, 1.0]. 
    protected override double Sample( )
    {
        return Math.Sqrt( base.Sample( ) );
    }

    public override int Next()
    {
       return (int) (Sample() * int.MaxValue);
    }   
}

public class RandomSampleDemo  
{
    static void Main( )
    {	
        const int rows = 4, cols = 6;
        const int runCount = 1000000;
        const int distGroupCount = 10;
        const double intGroupSize = 
            ( (double)int.MaxValue + 1.0 ) / (double)distGroupCount;

        RandomProportional randObj = new RandomProportional( );

        int[ ]      intCounts = new int[ distGroupCount ];
        int[ ]      realCounts = new int[ distGroupCount ];

        Console.WriteLine( 
            "\nThe derived RandomProportional class overrides " +
            "the Sample method to \ngenerate random numbers " +
            "in the range [0.0, 1.0]. The distribution \nof " +
            "the numbers is proportional to their numeric values. " +
            "For example, \nnumbers are generated in the " +
            "vicinity of 0.75 with three times the \n" +
            "probability of those generated near 0.25." );
        Console.WriteLine( 
            "\nRandom doubles generated with the NextDouble( ) " +
            "method:\n" );

        // Generate and display [rows * cols] random doubles. 
        for( int i = 0; i < rows; i++ )
        {
            for( int j = 0; j < cols; j++ )
                Console.Write( "{0,12:F8}", randObj.NextDouble( ) );
            Console.WriteLine( );
        }

        Console.WriteLine( 
            "\nRandom integers generated with the Next( ) " +
            "method:\n" );

        // Generate and display [rows * cols] random integers. 
        for( int i = 0; i < rows; i++ )
        {
            for( int j = 0; j < cols; j++ )
                Console.Write( "{0,12}", randObj.Next( ) );
            Console.WriteLine( );
        }

        Console.WriteLine( 
            "\nTo demonstrate the proportional distribution, " +
            "{0:N0} random \nintegers and doubles are grouped " +
            "into {1} equal value ranges. This \n" +
            "is the count of values in each range:\n",
            runCount, distGroupCount );
        Console.WriteLine( 
            "{0,21}{1,10}{2,20}{3,10}", "Integer Range",
            "Count", "Double Range", "Count" );
        Console.WriteLine( 
            "{0,21}{1,10}{2,20}{3,10}", "-------------",
            "-----", "------------", "-----" );

        // Generate random integers and doubles, and then count  
        // them by group. 
        for( int i = 0; i < runCount; i++ )
        {
            intCounts[ (int)( (double)randObj.Next( ) / 
                intGroupSize ) ]++;
            realCounts[ (int)( randObj.NextDouble( ) * 
                (double)distGroupCount ) ]++;
        }

        // Display the count of each group. 
        for( int i = 0; i < distGroupCount; i++ )
            Console.WriteLine( 
                "{0,10}-{1,10}{2,10:N0}{3,12:N5}-{4,7:N5}{5,10:N0}",
                (int)( (double)i * intGroupSize ),
                (int)( (double)( i + 1 ) * intGroupSize - 1.0 ),
                intCounts[ i ],
                ( (double)i ) / (double)distGroupCount,
                ( (double)( i + 1 ) ) / (double)distGroupCount,
                realCounts[ i ] );
    }
}

/*
This example of Random.Sample() displays the following output:

   The derived RandomProportional class overrides the Sample method to
   generate random numbers in the range [0.0, 1.0). The distribution
   of the numbers is proportional to the number values. For example,
   numbers are generated in the vicinity of 0.75 with three times the
   probability of those generated near 0.25.

   Random doubles generated with the NextDouble( ) method:

     0.59455719  0.17589882  0.83134398  0.35795862  0.91467727  0.54022658
     0.93716947  0.54817519  0.94685080  0.93705478  0.18582318  0.71272428
     0.77708682  0.95386216  0.70412393  0.86099417  0.08275804  0.79108316
     0.71019941  0.84205103  0.41685082  0.58186880  0.89492302  0.73067715

   Random integers generated with the Next( ) method:

     1570755704  1279192549  1747627711  1705700211  1372759203  1849655615
     2046235980  1210843924  1554274149  1307936697  1480207570  1057595022
      337854215   844109928  2028310798  1386669369  2073517658  1291729809
     1537248240  1454198019  1934863511  1640004334  2032620207   534654791

   To demonstrate the proportional distribution, 1,000,000 random
   integers and doubles are grouped into 10 equal value ranges. This
   is the count of values in each range:

           Integer Range     Count        Double Range     Count
           -------------     -----        ------------     -----
            0- 214748363    10,079     0.00000-0.10000    10,148
    214748364- 429496728    29,835     0.10000-0.20000    29,849
    429496729- 644245093    49,753     0.20000-0.30000    49,948
    644245094- 858993458    70,325     0.30000-0.40000    69,656
    858993459-1073741823    89,906     0.40000-0.50000    90,337
   1073741824-1288490187   109,868     0.50000-0.60000   110,225
   1288490188-1503238552   130,388     0.60000-0.70000   129,986
   1503238553-1717986917   149,231     0.70000-0.80000   150,428
   1717986918-1932735282   170,234     0.80000-0.90000   169,610
   1932735283-2147483647   190,381     0.90000-1.00000   189,813
*/

.NET Framework

Supported in: 4.5.2, 4.5.1, 4.5, 4, 3.5, 3.0, 2.0, 1.1, 1.0

.NET Framework Client Profile

Supported in: 4, 3.5 SP1

Portable Class Library

Supported in: Portable Class Library

.NET for Windows Store apps

Supported in: Windows 8

.NET for Windows Phone apps

Supported in: Windows Phone 8.1, Windows Phone 8, Silverlight 8.1

Windows Phone 8.1, Windows Phone 8, Windows 8.1, Windows Server 2012 R2, Windows 8, Windows Server 2012, Windows 7, Windows Vista SP2, Windows Server 2008 (Server Core Role not supported), Windows Server 2008 R2 (Server Core Role supported with SP1 or later; Itanium not supported)

The .NET Framework does not support all versions of every platform. For a list of the supported versions, see .NET Framework System Requirements.

Show:
© 2014 Microsoft