Export (0) Print
Expand All
3 out of 8 rated this helpful - Rate this topic

Math.Sin Method

Returns the sine of the specified angle.

Namespace:  System
Assembly:  mscorlib (in mscorlib.dll)
public static double Sin(
	double a
)

Parameters

a
Type: System.Double

An angle, measured in radians.

Return Value

Type: System.Double
The sine of a. If a is equal to NaN, NegativeInfinity, or PositiveInfinity, this method returns NaN.

The angle, a, must be in radians. Multiply by Math.PI/180 to convert degrees to radians.

Acceptable values of a range from approximately -9223372036854775295 to approximately 9223372036854775295. For values outside of this range, the Sin method returns a unchanged rather than throwing an exception.

The following example uses Sin to evaluate certain trigonometric identities for selected angles.

// Example for the trigonometric Math.Sin( double )  
// and Math.Cos( double ) methods. 
using System;

class SinCos 
{
    public static void Main() 
    {
        Console.WriteLine( 
            "This example of trigonometric " +
            "Math.Sin( double ) and Math.Cos( double )\n" +
            "generates the following output.\n" );
        Console.WriteLine( 
            "Convert selected values for X to radians \n" +
            "and evaluate these trigonometric identities:" );
        Console.WriteLine( "   sin^2(X) + cos^2(X) == 1\n" +
                           "   sin(2 * X) == 2 * sin(X) * cos(X)" );
        Console.WriteLine( "   cos(2 * X) == cos^2(X) - sin^2(X)" );

        UseSineCosine(15.0);
        UseSineCosine(30.0);
        UseSineCosine(45.0);

        Console.WriteLine( 
            "\nConvert selected values for X and Y to radians \n" +
            "and evaluate these trigonometric identities:" );
        Console.WriteLine( "   sin(X + Y) == sin(X) * cos(Y) + cos(X) * sin(Y)" );
        Console.WriteLine( "   cos(X + Y) == cos(X) * cos(Y) - sin(X) * sin(Y)" );

        UseTwoAngles(15.0, 30.0);
        UseTwoAngles(30.0, 45.0);
    }

    // Evaluate trigonometric identities with a given angle. 
    static void UseSineCosine(double degrees)
    {
        double angle    = Math.PI * degrees / 180.0;
        double sinAngle = Math.Sin(angle);
        double cosAngle = Math.Cos(angle);

        // Evaluate sin^2(X) + cos^2(X) == 1.
        Console.WriteLine( 
            "\n                           Math.Sin({0} deg) == {1:E16}\n" +
            "                           Math.Cos({0} deg) == {2:E16}",
            degrees, Math.Sin(angle), Math.Cos(angle) );
        Console.WriteLine( 
            "(Math.Sin({0} deg))^2 + (Math.Cos({0} deg))^2 == {1:E16}", 
            degrees, sinAngle * sinAngle + cosAngle * cosAngle );

        // Evaluate sin(2 * X) == 2 * sin(X) * cos(X).
        Console.WriteLine( 
            "                           Math.Sin({0} deg) == {1:E16}", 
            2.0 * degrees, Math.Sin(2.0 * angle) );
        Console.WriteLine( 
            "    2 * Math.Sin({0} deg) * Math.Cos({0} deg) == {1:E16}", 
            degrees, 2.0 * sinAngle * cosAngle );

        // Evaluate cos(2 * X) == cos^2(X) - sin^2(X).
        Console.WriteLine( 
            "                           Math.Cos({0} deg) == {1:E16}", 
            2.0 * degrees, Math.Cos(2.0 * angle) );
        Console.WriteLine( 
            "(Math.Cos({0} deg))^2 - (Math.Sin({0} deg))^2 == {1:E16}", 
            degrees, cosAngle * cosAngle - sinAngle * sinAngle );
    }

    // Evaluate trigonometric identities that are functions of two angles. 
    static void UseTwoAngles(double degreesX, double degreesY)
    {
        double  angleX  = Math.PI * degreesX / 180.0;
        double  angleY  = Math.PI * degreesY / 180.0;

        // Evaluate sin(X + Y) == sin(X) * cos(Y) + cos(X) * sin(Y).
        Console.WriteLine( 
            "\n        Math.Sin({0} deg) * Math.Cos({1} deg) +\n" + 
            "        Math.Cos({0} deg) * Math.Sin({1} deg) == {2:E16}", 
            degreesX, degreesY, Math.Sin(angleX) * Math.Cos(angleY) +
            Math.Cos(angleX) * Math.Sin(angleY));
        Console.WriteLine( 
            "                           Math.Sin({0} deg) == {1:E16}",
            degreesX + degreesY, Math.Sin(angleX + angleY));

        // Evaluate cos(X + Y) == cos(X) * cos(Y) - sin(X) * sin(Y).
        Console.WriteLine( 
            "        Math.Cos({0} deg) * Math.Cos({1} deg) -\n" + 
            "        Math.Sin({0} deg) * Math.Sin({1} deg) == {2:E16}", 
            degreesX, degreesY, Math.Cos(angleX) * Math.Cos(angleY) -
            Math.Sin(angleX) * Math.Sin(angleY));
        Console.WriteLine( 
            "                           Math.Cos({0} deg) == {1:E16}",
            degreesX + degreesY, Math.Cos(angleX + angleY));
    }
}

/*
This example of trigonometric Math.Sin( double ) and Math.Cos( double )
generates the following output.

Convert selected values for X to radians
and evaluate these trigonometric identities:
   sin^2(X) + cos^2(X) == 1
   sin(2 * X) == 2 * sin(X) * cos(X)
   cos(2 * X) == cos^2(X) - sin^2(X)

                           Math.Sin(15 deg) == 2.5881904510252074E-001
                           Math.Cos(15 deg) == 9.6592582628906831E-001
(Math.Sin(15 deg))^2 + (Math.Cos(15 deg))^2 == 1.0000000000000000E+000
                           Math.Sin(30 deg) == 4.9999999999999994E-001
    2 * Math.Sin(15 deg) * Math.Cos(15 deg) == 4.9999999999999994E-001
                           Math.Cos(30 deg) == 8.6602540378443871E-001
(Math.Cos(15 deg))^2 - (Math.Sin(15 deg))^2 == 8.6602540378443871E-001

                           Math.Sin(30 deg) == 4.9999999999999994E-001
                           Math.Cos(30 deg) == 8.6602540378443871E-001
(Math.Sin(30 deg))^2 + (Math.Cos(30 deg))^2 == 1.0000000000000000E+000
                           Math.Sin(60 deg) == 8.6602540378443860E-001
    2 * Math.Sin(30 deg) * Math.Cos(30 deg) == 8.6602540378443860E-001
                           Math.Cos(60 deg) == 5.0000000000000011E-001
(Math.Cos(30 deg))^2 - (Math.Sin(30 deg))^2 == 5.0000000000000022E-001

                           Math.Sin(45 deg) == 7.0710678118654746E-001
                           Math.Cos(45 deg) == 7.0710678118654757E-001
(Math.Sin(45 deg))^2 + (Math.Cos(45 deg))^2 == 1.0000000000000000E+000
                           Math.Sin(90 deg) == 1.0000000000000000E+000
    2 * Math.Sin(45 deg) * Math.Cos(45 deg) == 1.0000000000000000E+000
                           Math.Cos(90 deg) == 6.1230317691118863E-017
(Math.Cos(45 deg))^2 - (Math.Sin(45 deg))^2 == 2.2204460492503131E-016

Convert selected values for X and Y to radians
and evaluate these trigonometric identities:
   sin(X + Y) == sin(X) * cos(Y) + cos(X) * sin(Y)
   cos(X + Y) == cos(X) * cos(Y) - sin(X) * sin(Y)

        Math.Sin(15 deg) * Math.Cos(30 deg) +
        Math.Cos(15 deg) * Math.Sin(30 deg) == 7.0710678118654746E-001
                           Math.Sin(45 deg) == 7.0710678118654746E-001
        Math.Cos(15 deg) * Math.Cos(30 deg) -
        Math.Sin(15 deg) * Math.Sin(30 deg) == 7.0710678118654757E-001
                           Math.Cos(45 deg) == 7.0710678118654757E-001

        Math.Sin(30 deg) * Math.Cos(45 deg) +
        Math.Cos(30 deg) * Math.Sin(45 deg) == 9.6592582628906831E-001
                           Math.Sin(75 deg) == 9.6592582628906820E-001
        Math.Cos(30 deg) * Math.Cos(45 deg) -
        Math.Sin(30 deg) * Math.Sin(45 deg) == 2.5881904510252085E-001
                           Math.Cos(75 deg) == 2.5881904510252096E-001
*/

Windows 7, Windows Vista, Windows XP SP2, Windows XP Media Center Edition, Windows XP Professional x64 Edition, Windows XP Starter Edition, Windows Server 2008 R2, Windows Server 2008, Windows Server 2003, Windows Server 2000 SP4, Windows Millennium Edition, Windows 98, Windows CE, Windows Mobile for Smartphone, Windows Mobile for Pocket PC, Xbox 360, Zune

The .NET Framework and .NET Compact Framework do not support all versions of every platform. For a list of the supported versions, see .NET Framework System Requirements.

.NET Framework

Supported in: 3.5, 3.0, 2.0, 1.1, 1.0

.NET Compact Framework

Supported in: 3.5, 2.0, 1.0

XNA Framework

Supported in: 3.0, 2.0, 1.0

Community Additions

ADD
Show:
© 2014 Microsoft. All rights reserved.