Export (0) Print
Expand All

Multipoint Taxonomy

The taxonomy described in this section first distinguishes the control plane that concerns itself with the way a multipoint session is established, from the data plane that deals with the transfer of data among session participants.

Session Establishment in the Control Plane

In the control plane there are two distinct types of session establishment:

  • rooted
  • nonrooted

In the case of rooted control, a special participant, c_root, exists that is different from the rest of the members of this multipoint session, each of which are called a c_leaf. The c_root must remain present for the whole duration of the multipoint session, as the session is broken up in the absence of the c_root. The c_root usually initiates the multipoint session by setting up the connection to a c_leaf, or a number of c_leafs. The c_root may add more c_leafs, or (in some cases) a c_leaf can join the c_root at a later time. Examples of the rooted control plane can be found in ATM and ST-II.

For a nonrooted control plane, all the members belonging to a multipoint session are leaves, that is, no special participant acting as a c_root exists. Each c_leaf must add itself to a preexisting multipoint session that is always available (as in the case of an IP multicast address), or has been set up through some out-of-band (OOB) mechanism that is outside the scope of the Windows Sockets specification.

Another way to look at this is that a c_root still exists, but can be considered to be in the network cloud as opposed to one of the participants. Because a control root still exists, a nonrooted control plane could also be considered to be implicitly rooted. Examples for this kind of implicitly rooted multipoint schemes are:

  • A teleconferencing bridge.
  • The IP multicast system.
  • A Multipoint Control Unit (MCU) in an H.320 video conference.

Data Transfer in the Data Plane

In the data plane, there are two types of data transfer styles:

  • rooted
  • nonrooted

In a rooted data plane, a special participant called d_root exists. Data transfer only occurs between the d_root and the rest of the members of this multipoint session, each of which are referred to as a d_leaf. The traffic could be unidirectional or bidirectional. The data sent out from the d_root is duplicated (if required) and delivered to every d_leaf, while the data from d_leafs only goes to the d_root. In the case of a rooted data plane, no traffic is allowed among d_leafs. An example of a protocol that is rooted in the data plane is ST-II.

In a nonrooted data plane, all the participants are equal, that is, any data they send is delivered to all the other participants in the same multipoint session. Likewise each d_leaf node can receive data from all other d_leafs, and in some cases, from other nodes that are not participating in the multipoint session. No special d_root node exists. IP-multicast is nonrooted in the data plane.

Note that the question of where data unit duplication occurs, or whether a shared single tree or multiple shortest-path trees are used for multipoint distribution are protocol issues, and irrelevant to the interface the application would use to perform multipoint communications. Therefore these issues are not addressed in this appendix or the Windows Sockets interface.

The following table depicts the taxonomy described above and indicates how existing schemes fit into each of the categories. Note that there do not appear to be any existing schemes that employ a nonrooted control plane along with a rooted data plane.

 Rooted control planeNonrooted (implicit rooted) control plane
Rooted data planeATM, ST-IINo known examples.
Nonrooted data planeT.120IP-multicast, H.320 (MCU)




Community Additions

© 2014 Microsoft