Export (0) Print
Expand All

Semaphore.Release Method ()

Note: This method is new in the .NET Framework version 2.0.

Exits the semaphore and returns the previous count.

Namespace: System.Threading
Assembly: System (in system.dll)

public int Release ()
public int Release ()
public function Release () : int

Return Value

The count on the semaphore before the Release method was called.

Exception typeCondition

SemaphoreFullException

The semaphore count is already at the maximum value.

IOException

A Win32 error occurred with a named semaphore.

UnauthorizedAccessException

The current semaphore represents a named system semaphore, but the user does not have SemaphoreRights.Modify.

-or-

The current semaphore represents a named system semaphore, but it was not opened with SemaphoreRights.Modify.

Threads typically use the WaitOne method to enter the semaphore, and they typically use this method overload to exit.

If a SemaphoreFullException is thrown by the Release method, it does not necessarily indicate a problem with the calling thread. A programming error in another thread might have caused that thread to exit the semaphore more times than it entered.

If the current Semaphore object represents a named system semaphore, the user must have SemaphoreRights.Modify rights and the semaphore must have been opened with SemaphoreRights.Modify rights.

The following code example creates a semaphore with a maximum count of three and an initial count of zero. The example starts five threads, which block waiting for the semaphore. The main thread uses the Release(Int32) method overload to increase the semaphore count to its maximum, allowing three threads to enter the semaphore. Each thread uses the System.Threading.Thread.Sleep method to wait for one second, to simulate work, and then calls the Release method overload to release the semaphore.

Each time the semaphore is released, the previous semaphore count is displayed. Console messages track semaphore use. The simulated work interval is increased slightly for each thread, to make the output easier to read.

using System;
using System.Threading;

public class Example
{
    // A semaphore that simulates a limited resource pool.
    //
    private static Semaphore _pool;

    // A padding interval to make the output more orderly.
    private static int _padding;

    public static void Main()
    {
        // Create a semaphore that can satisfy up to three
        // concurrent requests. Use an initial count of zero,
        // so that the entire semaphore count is initially
        // owned by the main program thread.
        //
        _pool = new Semaphore(0, 3);

        // Create and start five numbered threads. 
        //
        for(int i = 1; i <= 5; i++)
        {
            Thread t = new Thread(new ParameterizedThreadStart(Worker));

            // Start the thread, passing the number.
            //
            t.Start(i);
        }

        // Wait for half a second, to allow all the
        // threads to start and to block on the semaphore.
        //
        Thread.Sleep(500);

        // The main thread starts out holding the entire
        // semaphore count. Calling Release(3) brings the 
        // semaphore count back to its maximum value, and
        // allows the waiting threads to enter the semaphore,
        // up to three at a time.
        //
        Console.WriteLine("Main thread calls Release(3).");
        _pool.Release(3);

        Console.WriteLine("Main thread exits.");
    }

    private static void Worker(object num)
    {
        // Each worker thread begins by requesting the
        // semaphore.
        Console.WriteLine("Thread {0} begins " +
            "and waits for the semaphore.", num);
        _pool.WaitOne();

        // A padding interval to make the output more orderly.
        int padding = Interlocked.Add(ref _padding, 100);

        Console.WriteLine("Thread {0} enters the semaphore.", num);
        
        // The thread's "work" consists of sleeping for 
        // about a second. Each thread "works" a little 
        // longer, just to make the output more orderly.
        //
        Thread.Sleep(1000 + padding);

        Console.WriteLine("Thread {0} releases the semaphore.", num);
        Console.WriteLine("Thread {0} previous semaphore count: {1}",
            num, _pool.Release());
    }
}

import System.*;
import System.Threading.*;

public class Example
{
    // A semaphore that simulates a limited resource pool.
    //
    private static Semaphore _pool;

    // A padding interval to make the output more orderly.
    private static int _padding;

    public static void main(String[] args)
    {
        // Create a semaphore that can satisfy up to three
        // concurrent requests. Use an initial count of zero,
        // so that the entire semaphore count is initially
        // owned by the main program thread.
        //
        _pool = new Semaphore(0, 3);
        // Create and start five numbered threads. 
        //
        for (int i = 1; i <= 5; i++) {
            System.Threading.Thread t = new System.Threading.Thread(new 
                ParameterizedThreadStart(Worker));
            // Start the thread, passing the number.
            //
            t.Start((Int32)i);
        }
        // Wait for half a second, to allow all the
        // threads to start and to block on the semaphore.
        //
        System.Threading.Thread.Sleep(500);
        // The main thread starts out holding the entire
        // semaphore count. Calling Release(3) brings the 
        // semaphore count back to its maximum value, and
        // allows the waiting threads to enter the semaphore,
        // up to three at a time.
        //
        Console.WriteLine("main thread calls Release(3).");
        _pool.Release(3);

        Console.WriteLine("main thread exits.");
    } //main

    private static void Worker(Object num)
    {
        // Each worker thread begins by requesting the
        // semaphore.
        Console.WriteLine("Thread {0} begins " 
            + "and waits for the semaphore.", num);
        _pool.WaitOne();
        // A padding interval to make the output more orderly.
        int padding = Interlocked.Add(_padding, 100);

        Console.WriteLine("Thread {0} enters the semaphore.", num);
        // The thread's "work" consists of sleeping for 
        // about a second. Each thread "works" a little 
        // longer, just to make the output more orderly.
        //
        System.Threading.Thread.Sleep(1000 + padding);

        Console.WriteLine("Thread {0} releases the semaphore.", num);
        Console.WriteLine("Thread {0} previous semaphore count: {1}", num, 
            (Int32)_pool.Release());
    } //Worker
} //Example

Windows 98, Windows 2000 SP4, Windows Millennium Edition, Windows Server 2003, Windows XP Media Center Edition, Windows XP Professional x64 Edition, Windows XP SP2, Windows XP Starter Edition

The .NET Framework does not support all versions of every platform. For a list of the supported versions, see System Requirements.

.NET Framework

Supported in: 2.0

Community Additions

ADD
Show:
© 2014 Microsoft