Export (0) Print
Expand All

sinh

Returns the hyperbolic sine of a complex number.

template<class Type> 
   complex<Type> sinh( 
      const complex<Type>& _ComplexNum 
   );

_ComplexNum

The complex number whose hyperbolic sine is being determined.

The complex number that is the hyperbolic sine of the input complex number.

Identities defining the complex hyperbolic sines:

sinh (z) = (1/2)*( exp (z) – exp (-z) )

sinh (z) = sinh (a + bi) = sinh (a) cos (b) + icosh (a) sin (b)

// complex_sinh.cpp
// compile with: /EHsc
#include <vector>
#include <complex>
#include <iostream>

int main( )
{
   using namespace std;
   double pi = 3.14159265359;
   complex <double> c1 ( 3.0 , 4.0 );
   cout << "Complex number c1 = " << c1 << endl;

   // Values of sine of a complex number c1
   complex <double> c2 = sinh ( c1 );
   cout << "Complex number c2 = sinh ( c1 ) = " << c2 << endl;
   double absc2 = abs ( c2 );
   double argc2 = arg ( c2 );
   cout << "The modulus of c2 is: " << absc2 << endl;
   cout << "The argument of c2 is: "<< argc2 << " radians, which is " 
        << argc2 * 180 / pi << " degrees." << endl << endl; 

   // Hyperbolic sines of the standard angles in 
   // the first two quadrants of the complex plane
   vector <complex <double> > v1;
   vector <complex <double> >::iterator Iter1;
   complex <double> vc1  ( polar ( 1.0, pi / 6 ) );
   v1.push_back( sinh ( vc1 ) );
   complex <double> vc2  ( polar ( 1.0, pi / 3 ) );
   v1.push_back( sinh ( vc2 ) );
   complex <double> vc3  ( polar ( 1.0, pi / 2 ) );
   v1.push_back( sinh ( vc3) );
   complex <double> vc4  ( polar ( 1.0, 2 * pi / 3 ) );
   v1.push_back( sinh ( vc4 ) );
   complex <double> vc5  ( polar ( 1.0, 5 * pi / 6 ) );
   v1.push_back( sinh ( vc5 ) );
   complex <double> vc6  ( polar ( 1.0, pi ) );
   v1.push_back( sinh ( vc6 ) );

   cout << "The complex components sinh (vci), where abs (vci) = 1"
        << "\n& arg (vci) = i * pi / 6 of the vector v1 are:\n" ;
   for ( Iter1 = v1.begin( ) ; Iter1 != v1.end( ) ; Iter1++ )
      cout << *Iter1 << endl;
}
Complex number c1 = (3,4)
Complex number c2 = sinh ( c1 ) = (-6.54812,-7.61923)
The modulus of c2 is: 10.0464
The argument of c2 is: -2.28073 radians, which is -130.676 degrees.

The complex components sinh (vci), where abs (vci) = 1
& arg (vci) = i * pi / 6 of the vector v1 are:
(0.858637,0.670731)
(0.337596,0.85898)
(-5.58735e-014,0.841471)
(-0.337596,0.85898)
(-0.858637,0.670731)
(-1.1752,-3.19145e-013)

Header: <complex>

Namespace: std

Show:
© 2014 Microsoft