Export (0) Print
Expand All

HMACSHA384 Class

Members

Note: This class is new in the .NET Framework version 2.0.

Computes a Hash-based Message Authentication Code (HMAC) using the SHA384 hash function.

Namespace: System.Security.Cryptography
Assembly: mscorlib (in mscorlib.dll)

Syntax

Visual Basic (Declaration)

<ComVisibleAttribute(True)> _
Public Class HMACSHA384
	Inherits HMAC

Visual Basic (Usage)

Dim instance As HMACSHA384

C#

[ComVisibleAttribute(true)] 
public class HMACSHA384 : HMAC

C++

[ComVisibleAttribute(true)] 
public ref class HMACSHA384 : public HMAC

J#

/** @attribute ComVisibleAttribute(true) */ 
public class HMACSHA384 extends HMAC

JScript

ComVisibleAttribute(true) 
public class HMACSHA384 extends HMAC

Remarks

HMACSHA384 is a type of keyed hash algorithm that is constructed from the SHA-384 hash function and used as a Hash-based Message Authentication Code (HMAC). The HMAC process mixes a secret key with the message data, hashes the result with the hash function, mixes that hash value with the secret key again, and then applies the hash function a second time. The output hash is 384 bits in length.

An HMAC can be used to determine whether a message sent over an insecure channel has been tampered with, provided that the sender and receiver share a secret key. The sender computes the hash value for the original data and sends both the original data and hash value as a single message. The receiver recalculates the hash value on the received message and checks that the computed HMAC matches the transmitted HMAC.

Any change to the data or the hash value will result in a mismatch, because knowledge of the secret key is required to change the message and reproduce the correct hash value. Therefore, if the original and computed hash values match, the message is authenticated.

HMACSHA384 accepts keys of any size, and produces a hash sequence of length 384 bits.

Example

The following code example shows how to encode a file using HMACSHA384 and then how to decode the file.

C#

using System;
using System.IO;
using System.Security.Cryptography;

public class HMACSHA384example
{
	// Computes a keyed hash for a source file, creates a target file with the keyed hash
	// prepended to the contents of the source file, then decrypts the file and compares
	// the source and the decrypted files.
	public static void EncodeFile(byte[] key, String sourceFile, String destFile)
	{
		// Initialize the keyed hash object.
		HMACSHA384 myhmacsha384 = new HMACSHA384(key);
		FileStream inStream = new FileStream(sourceFile, FileMode.Open);
		FileStream outStream = new FileStream(destFile, FileMode.Create);
		// Compute the hash of the input file.
		byte[] hashValue = myhmacsha384.ComputeHash(inStream);
		// Reset inStream to the beginning of the file.
		inStream.Position = 0;
		// Write the computed hash value to the output file.
		outStream.Write(hashValue, 0, hashValue.Length);
		// Copy the contents of the sourceFile to the destFile.
		int bytesRead;
		// read 1K at a time
		byte[] buffer = new byte[1024]; 
		do
		{
			// Read from the wrapping CryptoStream.
			bytesRead = inStream.Read(buffer,0,1024); 
			outStream.Write(buffer, 0, bytesRead);
		} while (bytesRead > 0); 
		myhmacsha384.Clear();
		// Close the streams
		inStream.Close();
		outStream.Close();
		return;
	} // end EncodeFile


	// Decrypt the encoded file and compare to original file.
	public static bool DecodeFile(byte[] key, String sourceFile)
	{
		// Initialize the keyed hash object. 
		HMACSHA384 hmacsha384 = new HMACSHA384(key);
		// Create an array to hold the keyed hash value read from the file.
		byte[] storedHash = new byte[hmacsha384.HashSize/8];
		// Create a FileStream for the source file.
		FileStream inStream = new FileStream(sourceFile, FileMode.Open);
		// Read in the storedHash.
		inStream.Read(storedHash, 0, storedHash.Length);
		// Compute the hash of the remaining contents of the file.
		// The stream is properly positioned at the beginning of the content, 
		// immediately after the stored hash value.
		byte[] computedHash = hmacsha384.ComputeHash(inStream);
		// compare the computed hash with the stored value
		for (int i =0; i < storedHash.Length; i++)
		{
			if (computedHash[i] != storedHash[i])
			{
				Console.WriteLine("Hash values differ! Encoded file has been tampered with!");
				return false;
			}
		}
		Console.WriteLine("Hash values agree -- no tampering occurred.");
		return true;
	} //end DecodeFile

	private const string usageText = "Usage: HMACSHA384 inputfile.txt encryptedfile.hsh\nYou must specify the two file names. Only the first file must exist.\n";
	public static void Main(string[] Fileargs)
	{
		//If no file names are specified, write usage text.
		if (Fileargs.Length < 2)
		{
			Console.WriteLine(usageText);
		}
		else
		{
			try
			{
				// Create a random key using a random number generator. This would be the
				//  secret key shared by sender and receiver.
				byte[] secretkey = new Byte[64];
				//RNGCryptoServiceProvider is an implementation of a random number generator.
				RNGCryptoServiceProvider rng = new RNGCryptoServiceProvider();
				// The array is now filled with cryptographically strong random bytes.
				rng.GetBytes(secretkey); 

				// Use the secret key to encode the message file.
				EncodeFile(secretkey, Fileargs[0], Fileargs[1]);

				// Take the encoded file and decode
				DecodeFile(secretkey, Fileargs[1]);
			}
			catch (IOException e)
			{
				Console.WriteLine("Error: File not found",e);
			}
		} //end if-else

	}  //end main
} //end class

C++

using namespace System;
using namespace System::IO;
using namespace System::Security::Cryptography;

// Computes a keyed hash for a source file, creates a target file with the keyed hash
// prepended to the contents of the source file, then decrypts the file and compares
// the source and the decrypted files.
void EncodeFile( array<Byte>^key, String^ sourceFile, String^ destFile )
{
   
   // Initialize the keyed hash object.
   HMACSHA384^ myhmacsha384 = gcnew HMACSHA384( key );
   FileStream^ inStream = gcnew FileStream( sourceFile,FileMode::Open );
   FileStream^ outStream = gcnew FileStream( destFile,FileMode::Create );
   
   // Compute the hash of the input file.
   array<Byte>^hashValue = myhmacsha384->ComputeHash( inStream );
   
   // Reset inStream to the beginning of the file.
   inStream->Position = 0;
   
   // Write the computed hash value to the output file.
   outStream->Write( hashValue, 0, hashValue->Length );
   
   // Copy the contents of the sourceFile to the destFile.
   int bytesRead;
   
   // read 1K at a time
   array<Byte>^buffer = gcnew array<Byte>(1024);
   do
   {
      
      // Read from the wrapping CryptoStream.
      bytesRead = inStream->Read( buffer, 0, 1024 );
      outStream->Write( buffer, 0, bytesRead );
   }
   while ( bytesRead > 0 );

   myhmacsha384->Clear();
   
   // Close the streams
   inStream->Close();
   outStream->Close();
   return;
} // end EncodeFile



// Decrypt the encoded file and compare to original file.
bool DecodeFile( array<Byte>^key, String^ sourceFile )
{
   
   // Initialize the keyed hash object. 
   HMACSHA384^ hmacsha384 = gcnew HMACSHA384( key );
   
   // Create an array to hold the keyed hash value read from the file.
   array<Byte>^storedHash = gcnew array<Byte>(hmacsha384->HashSize / 8);
   
   // Create a FileStream for the source file.
   FileStream^ inStream = gcnew FileStream( sourceFile,FileMode::Open );
   
   // Read in the storedHash.
   inStream->Read( storedHash, 0, storedHash->Length );
   
   // Compute the hash of the remaining contents of the file.
   // The stream is properly positioned at the beginning of the content, 
   // immediately after the stored hash value.
   array<Byte>^computedHash = hmacsha384->ComputeHash( inStream );
   
   // compare the computed hash with the stored value
   for ( int i = 0; i < storedHash->Length; i++ )
   {
      if ( computedHash[ i ] != storedHash[ i ] )
      {
         Console::WriteLine( "Hash values differ! Encoded file has been tampered with!" );
         return false;
      }

   }
   Console::WriteLine( "Hash values agree -- no tampering occurred." );
   return true;
} //end DecodeFile


int main()
{
   array<String^>^Fileargs = Environment::GetCommandLineArgs();
   String^ usageText = "Usage: HMACSHA384 inputfile.txt encryptedfile.hsh\nYou must specify the two file names. Only the first file must exist.\n";
   
   //If no file names are specified, write usage text.
   if ( Fileargs->Length < 3 )
   {
      Console::WriteLine( usageText );
   }
   else
   {
      try
      {
         
         // Create a random key using a random number generator. This would be the
         //  secret key shared by sender and receiver.
         array<Byte>^secretkey = gcnew array<Byte>(64);
         
         //RNGCryptoServiceProvider is an implementation of a random number generator.
         RNGCryptoServiceProvider^ rng = gcnew RNGCryptoServiceProvider;
         
         // The array is now filled with cryptographically strong random bytes.
         rng->GetBytes( secretkey );
         
         // Use the secret key to encode the message file.
         EncodeFile( secretkey, Fileargs[ 1 ], Fileargs[ 2 ] );
         
         // Take the encoded file and decode
         DecodeFile( secretkey, Fileargs[ 2 ] );
      }
      catch ( IOException^ e ) 
      {
         Console::WriteLine( "Error: File not found", e );
      }

   }
} //end main


J#

import System.*;
import System.IO.*;
import System.Security.Cryptography.*;

public class HMACSHA384Example
{
    // Computes a keyed hash for a source file, creates a target file with 
    // the keyed hash prepended to the contents of the source file, then 
    // decrypts the file and compares the source and the decrypted files.
    public static void EncodeFile(ubyte key[], String sourceFile, 
        String destFile)
    {
        // Initialize the keyed hash object.
        HMACSHA384 myhmacsha384 = new HMACSHA384(key);
        FileStream inStream = new FileStream(sourceFile, FileMode.Open);
        FileStream outStream = new FileStream(destFile, FileMode.Create);

        // Compute the hash of the input file.
        ubyte hashValue[] = myhmacsha384.ComputeHash(inStream);

        // Reset inStream to the beginning of the file.
        inStream.set_Position(0);

        // Write the computed hash value to the output file.
        outStream.Write(hashValue, 0, hashValue.length);

        // Copy the contents of the sourceFile to the destFile.
        int bytesRead;

        // read 1K at a time
        ubyte buffer[] = new ubyte[1024];

        do {
            // Read from the wrapping CryptoStream.
            bytesRead = inStream.Read(buffer, 0, 1024);
            outStream.Write(buffer, 0, bytesRead);
        } while (bytesRead > 0);
        myhmacsha384.Clear();

        // Close the streams
        inStream.Close();
        outStream.Close();
        return;
    } // end EncodeFile
    
    // Decrypt the encoded file and compare to original file.
    public static boolean DecodeFile(ubyte key [], String sourceFile)
    {
        // Initialize the keyed hash object. 
        HMACSHA384 hmacsha384 = new HMACSHA384(key);

        // Create an array to hold the keyed hash value read from the file.
        ubyte storedHash[] = new ubyte[hmacsha384.get_HashSize() / 8];

        // Create a FileStream for the source file.
        FileStream inStream = new FileStream(sourceFile, FileMode.Open);

        // Read in the storedHash.
        inStream.Read(storedHash, 0, storedHash.length);

        // Compute the hash of the remaining contents of the file.
        // The stream is properly positioned at the beginning of the content, 
        // immediately after the stored hash value.
        ubyte computedHash[] = hmacsha384.ComputeHash(inStream);

        // compare the computed hash with the stored value
        for (int i = 0; i < storedHash.length; i++) {
            if (computedHash[i] != storedHash[i]) {
                Console.WriteLine("Hash values differ! Encoded file has been " 
                    + " tampered with!");
                return false;
            }
        }

        Console.WriteLine("Hash values agree -- no tampering occurred.");
        return true;
    } //end DecodeFile

    private static String usageText = "Usage: HMACSHA384 inputfile.txt " 
        + "encryptedfile.hsh\nYou must specify the two file names. Only the " 
        + "first file must exist.\n";

    public static void main(String[] fileargs)
    {
        //If no file names are specified, write usage text.
        if (fileargs.length < 2) {
            Console.WriteLine(usageText);
        }
        else {
            try {
                // Create a random key using a random number generator. This 
                // would be the secret key shared by sender and receiver.
                ubyte secretKey[] = new ubyte[64];

                // RNGCryptoServiceProvider is an implementation of a random
                // number generator.
                RNGCryptoServiceProvider rng = new RNGCryptoServiceProvider();

                // The array is now filled with cryptographically strong
                // random bytes.
                rng.GetBytes(secretKey);

                // Use the secret key to encode the message file.
                EncodeFile(secretKey, fileargs[0], fileargs[1]);

                // Take the encoded file and decode
                DecodeFile(secretKey, fileargs[1]);
            }
            catch (IOException e) {
                Console.WriteLine("Error: File not found", e);
            }
        } //end if-else
    } //end main
} //end class HMACSHA384Example

Inheritance Hierarchy

System.Object
   System.Security.Cryptography.HashAlgorithm
     System.Security.Cryptography.KeyedHashAlgorithm
       System.Security.Cryptography.HMAC
        System.Security.Cryptography.HMACSHA384

Thread Safety

Any public static (Shared in Visual Basic) members of this type are thread safe. Any instance members are not guaranteed to be thread safe.

Platforms

Windows 98, Windows 2000 SP4, Windows Millennium Edition, Windows Server 2003, Windows XP Media Center Edition, Windows XP Professional x64 Edition, Windows XP SP2, Windows XP Starter Edition

The .NET Framework does not support all versions of every platform. For a list of the supported versions, see System Requirements.

Version Information

.NET Framework

Supported in: 2.0

See Also

Community Additions

ADD
Show:
© 2014 Microsoft