Export (0) Print
Expand All
1 out of 3 rated this helpful - Rate this topic

Math.Exp Method

Returns e raised to the specified power.

[Visual Basic]
Public Shared Function Exp( _
   ByVal d As Double _
) As Double
[C#]
public static double Exp(
 double d
);
[C++]
public: static double Exp(
 double d
);
[JScript]
public static function Exp(
   d : double
) : double;

Parameters

d
A number specifying a power.

Return Value

The number e raised to the power d. If d equals NaN or PositiveInfinity, that value is returned. If d equals NegativeInfinity, 0 is returned.

Remarks

Use the Pow method to calculate powers of other bases.

Exp is the inverse of Log.

Example

[Visual Basic, C#, C++] The following example uses Exp to evaluate certain exponential and logarithmic identities for selected values.

[Visual Basic] 
' Example for the Math.Exp( Double ) method.
Imports System
Imports Microsoft.VisualBasic

Module ExpDemo
   
    Sub Main()
        Console.WriteLine( _
            "This example of Math.Exp( Double ) " & _
            "generates the following output." & vbCrLf)
        Console.WriteLine( _
            "Evaluate [e ^ ln(X) == ln(e ^ X) == X] " & _
            "with selected values for X:")

        UseLnExp(0.1)
        UseLnExp(1.2)
        UseLnExp(4.9)
        UseLnExp(9.9)
          
        Console.WriteLine( vbCrLf & _
            "Evaluate these identities with selected values for X and Y:")
        Console.WriteLine("   (e ^ X) * (e ^ Y) = e ^ (X + Y)")
        Console.WriteLine("   (e ^ X) ^ Y = e ^ (X * Y)")
        Console.WriteLine("   X ^ Y = e ^ (Y * ln(X))")
          
        UseTwoArgs(0.1, 1.2)
        UseTwoArgs(1.2, 4.9)
        UseTwoArgs(4.9, 9.9)
    End Sub 'Main
       
    ' Evaluate logarithmic/exponential identity with a given argument.
    Sub UseLnExp(arg As Double)

        ' Evaluate e ^ ln(X) = ln(e ^ X) = X.
        Console.WriteLine( _
            vbCrLf & "      Math.Exp(Math.Log({0})) = {1:E16}" + _
            vbCrLf & "      Math.Log(Math.Exp({0})) = {2:E16}", _
            arg, Math.Exp(Math.Log(arg)), Math.Log(Math.Exp(arg)))
    End Sub 'UseLnExp
       
    ' Evaluate exponential identities that are functions of two arguments.
    Sub UseTwoArgs(argX As Double, argY As Double)

        ' Evaluate (e ^ X) * (e ^ Y) = e ^ (X + Y).
        Console.WriteLine( _
            vbCrLf & "Math.Exp({0}) * Math.Exp({1}) = {2:E16}" + _
            vbCrLf & "          Math.Exp({0} + {1}) = {3:E16}", _
            argX, argY, Math.Exp(argX) * Math.Exp(argY), _
            Math.Exp((argX + argY)))
          
        ' Evaluate (e ^ X) ^ Y = e ^ (X * Y).
        Console.WriteLine( _
            " Math.Pow(Math.Exp({0}), {1}) = {2:E16}" + _
            vbCrLf & "          Math.Exp({0} * {1}) = {3:E16}", _
            argX, argY, Math.Pow(Math.Exp(argX), argY), _
            Math.Exp((argX * argY)))
          
        ' Evaluate X ^ Y = e ^ (Y * ln(X)).
        Console.WriteLine( _
            "           Math.Pow({0}, {1}) = {2:E16}" + _
            vbCrLf & "Math.Exp({1} * Math.Log({0})) = {3:E16}", _
            argX, argY, Math.Pow(argX, argY), _
            Math.Exp((argY * Math.Log(argX))))

    End Sub 'UseTwoArgs
End Module 'ExpDemo

' This example of Math.Exp( Double ) generates the following output.
' 
' Evaluate [e ^ ln(X) == ln(e ^ X) == X] with selected values for X:
' 
'       Math.Exp(Math.Log(0.1)) = 1.0000000000000001E-001
'       Math.Log(Math.Exp(0.1)) = 1.0000000000000008E-001
' 
'       Math.Exp(Math.Log(1.2)) = 1.2000000000000000E+000
'       Math.Log(Math.Exp(1.2)) = 1.2000000000000000E+000
' 
'       Math.Exp(Math.Log(4.9)) = 4.9000000000000012E+000
'       Math.Log(Math.Exp(4.9)) = 4.9000000000000004E+000
' 
'       Math.Exp(Math.Log(9.9)) = 9.9000000000000004E+000
'       Math.Log(Math.Exp(9.9)) = 9.9000000000000004E+000
' 
' Evaluate these identities with selected values for X and Y:
'    (e ^ X) * (e ^ Y) = e ^ (X + Y)
'    (e ^ X) ^ Y = e ^ (X * Y)
'    X ^ Y = e ^ (Y * ln(X))
' 
' Math.Exp(0.1) * Math.Exp(1.2) = 3.6692966676192444E+000
'           Math.Exp(0.1 + 1.2) = 3.6692966676192444E+000
'  Math.Pow(Math.Exp(0.1), 1.2) = 1.1274968515793757E+000
'           Math.Exp(0.1 * 1.2) = 1.1274968515793757E+000
'            Math.Pow(0.1, 1.2) = 6.3095734448019331E-002
' Math.Exp(1.2 * Math.Log(0.1)) = 6.3095734448019344E-002
' 
' Math.Exp(1.2) * Math.Exp(4.9) = 4.4585777008251705E+002
'           Math.Exp(1.2 + 4.9) = 4.4585777008251716E+002
'  Math.Pow(Math.Exp(1.2), 4.9) = 3.5780924170885260E+002
'           Math.Exp(1.2 * 4.9) = 3.5780924170885277E+002
'            Math.Pow(1.2, 4.9) = 2.4433636334442981E+000
' Math.Exp(4.9 * Math.Log(1.2)) = 2.4433636334442981E+000
' 
' Math.Exp(4.9) * Math.Exp(9.9) = 2.6764450551890982E+006
'           Math.Exp(4.9 + 9.9) = 2.6764450551891015E+006
'  Math.Pow(Math.Exp(4.9), 9.9) = 1.1684908531676833E+021
'           Math.Exp(4.9 * 9.9) = 1.1684908531676829E+021
'            Math.Pow(4.9, 9.9) = 6.8067718210957060E+006
' Math.Exp(9.9 * Math.Log(4.9)) = 6.8067718210956985E+006

[C#] 
// Example for the Math.Exp( double ) method.
using System;

class ExpDemo 
{
    public static void Main() 
    {
        Console.WriteLine( 
            "This example of Math.Exp( double ) " +
            "generates the following output.\n" );
        Console.WriteLine( 
            "Evaluate [e ^ ln(X) == ln(e ^ X) == X] " +
            "with selected values for X:" );

        UseLnExp(0.1);
        UseLnExp(1.2);
        UseLnExp(4.9);
        UseLnExp(9.9);

        Console.WriteLine( 
            "\nEvaluate these identities with " +
            "selected values for X and Y:" );
        Console.WriteLine( "   (e ^ X) * (e ^ Y) == e ^ (X + Y)" );
        Console.WriteLine( "   (e ^ X) ^ Y == e ^ (X * Y)" );
        Console.WriteLine( "   X ^ Y == e ^ (Y * ln(X))" );

        UseTwoArgs(0.1, 1.2);
        UseTwoArgs(1.2, 4.9);
        UseTwoArgs(4.9, 9.9);
    }

    // Evaluate logarithmic/exponential identity with a given argument.
    static void UseLnExp(double arg)
    {
        // Evaluate e ^ ln(X) == ln(e ^ X) == X.
        Console.WriteLine( 
            "\n      Math.Exp(Math.Log({0})) == {1:E16}\n" +
            "      Math.Log(Math.Exp({0})) == {2:E16}",
            arg, Math.Exp(Math.Log(arg)), Math.Log(Math.Exp(arg)) );
    }

    // Evaluate exponential identities that are functions of two arguments.
    static void UseTwoArgs(double argX, double argY)
    {
        // Evaluate (e ^ X) * (e ^ Y) == e ^ (X + Y).
        Console.WriteLine( 
            "\nMath.Exp({0}) * Math.Exp({1}) == {2:E16}" + 
            "\n          Math.Exp({0} + {1}) == {3:E16}", 
            argX, argY, Math.Exp(argX) * Math.Exp(argY),
            Math.Exp(argX + argY) );

        // Evaluate (e ^ X) ^ Y == e ^ (X * Y).
        Console.WriteLine( 
            " Math.Pow(Math.Exp({0}), {1}) == {2:E16}" +
            "\n          Math.Exp({0} * {1}) == {3:E16}",
            argX, argY, Math.Pow(Math.Exp(argX), argY),
            Math.Exp(argX * argY) );

        // Evaluate X ^ Y == e ^ (Y * ln(X)).
        Console.WriteLine( 
            "           Math.Pow({0}, {1}) == {2:E16}" + 
            "\nMath.Exp({1} * Math.Log({0})) == {3:E16}", 
            argX, argY, Math.Pow(argX, argY), 
            Math.Exp(argY * Math.Log(argX)) );
    }
}

/*
This example of Math.Exp( double ) generates the following output.

Evaluate [e ^ ln(X) == ln(e ^ X) == X] with selected values for X:

      Math.Exp(Math.Log(0.1)) == 1.0000000000000001E-001
      Math.Log(Math.Exp(0.1)) == 1.0000000000000008E-001

      Math.Exp(Math.Log(1.2)) == 1.2000000000000000E+000
      Math.Log(Math.Exp(1.2)) == 1.2000000000000000E+000

      Math.Exp(Math.Log(4.9)) == 4.9000000000000012E+000
      Math.Log(Math.Exp(4.9)) == 4.9000000000000004E+000

      Math.Exp(Math.Log(9.9)) == 9.9000000000000004E+000
      Math.Log(Math.Exp(9.9)) == 9.9000000000000004E+000

Evaluate these identities with selected values for X and Y:
   (e ^ X) * (e ^ Y) == e ^ (X + Y)
   (e ^ X) ^ Y == e ^ (X * Y)
   X ^ Y == e ^ (Y * ln(X))

Math.Exp(0.1) * Math.Exp(1.2) == 3.6692966676192444E+000
          Math.Exp(0.1 + 1.2) == 3.6692966676192444E+000
 Math.Pow(Math.Exp(0.1), 1.2) == 1.1274968515793757E+000
          Math.Exp(0.1 * 1.2) == 1.1274968515793757E+000
           Math.Pow(0.1, 1.2) == 6.3095734448019331E-002
Math.Exp(1.2 * Math.Log(0.1)) == 6.3095734448019344E-002

Math.Exp(1.2) * Math.Exp(4.9) == 4.4585777008251705E+002
          Math.Exp(1.2 + 4.9) == 4.4585777008251716E+002
 Math.Pow(Math.Exp(1.2), 4.9) == 3.5780924170885260E+002
          Math.Exp(1.2 * 4.9) == 3.5780924170885277E+002
           Math.Pow(1.2, 4.9) == 2.4433636334442981E+000
Math.Exp(4.9 * Math.Log(1.2)) == 2.4433636334442981E+000

Math.Exp(4.9) * Math.Exp(9.9) == 2.6764450551890982E+006
          Math.Exp(4.9 + 9.9) == 2.6764450551891015E+006
 Math.Pow(Math.Exp(4.9), 9.9) == 1.1684908531676833E+021
          Math.Exp(4.9 * 9.9) == 1.1684908531676829E+021
           Math.Pow(4.9, 9.9) == 6.8067718210957060E+006
Math.Exp(9.9 * Math.Log(4.9)) == 6.8067718210956985E+006
*/

[C++] 
// Example for the Math::Exp( double ) method.
#using <mscorlib.dll>
using namespace System;

// Evaluate logarithmic/exponential identity with a given argument.
void UseLnExp(double arg)
{
    // Evaluate e ^ ln(X) == ln(e ^ X) == X.
    Console::WriteLine( 
        S"\n      Math::Exp(Math::Log({0})) == {1:E16}\n" 
        S"      Math::Log(Math::Exp({0})) == {2:E16}",
        __box(arg), __box(Math::Exp(Math::Log(arg))), 
        __box(Math::Log(Math::Exp(arg))) );
}

// Evaluate exponential identities that are functions of two arguments.
void UseTwoArgs(double argX, double argY)
{
    // Evaluate (e ^ X) * (e ^ Y) == e ^ (X + Y).
    Console::WriteLine( 
        S"\nMath::Exp({0}) * Math::Exp({1}) == {2:E16}" 
        S"\n           Math::Exp({0} + {1}) == {3:E16}", 
        __box(argX), __box(argY), 
        __box(Math::Exp(argX) * Math::Exp(argY)),
        __box(Math::Exp(argX + argY)) );

    // Evaluate (e ^ X) ^ Y == e ^ (X * Y).
    Console::WriteLine( 
        S" Math::Pow(Math::Exp({0}), {1}) == {2:E16}" 
        S"\n           Math::Exp({0} * {1}) == {3:E16}",
        __box(argX), __box(argY), 
        __box(Math::Pow(Math::Exp(argX), argY)),
        __box(Math::Exp(argX * argY)) );

    // Evaluate X ^ Y == e ^ (Y * ln(X)).
    Console::WriteLine( 
        S"            Math::Pow({0}, {1}) == {2:E16}" 
        S"\nMath::Exp({1} * Math::Log({0})) == {3:E16}", 
        __box(argX), __box(argY), 
        __box(Math::Pow(argX, argY)), 
        __box(Math::Exp(argY * Math::Log(argX))) );
}

void main() 
{
    Console::WriteLine( 
        S"This example of Math::Exp( double ) " 
        S"generates the following output.\n" );
    Console::WriteLine( 
        S"Evaluate [e ^ ln(X) == ln(e ^ X) == X] "
        S"with selected values for X:" );

    UseLnExp(0.1);
    UseLnExp(1.2);
    UseLnExp(4.9);
    UseLnExp(9.9);

    Console::WriteLine( 
        S"\nEvaluate these identities with "
        S"selected values for X and Y:" );
    Console::WriteLine( S"   (e ^ X) * (e ^ Y) == e ^ (X + Y)" );
    Console::WriteLine( S"   (e ^ X) ^ Y == e ^ (X * Y)" );
    Console::WriteLine( S"   X ^ Y == e ^ (Y * ln(X))" );

    UseTwoArgs(0.1, 1.2);
    UseTwoArgs(1.2, 4.9);
    UseTwoArgs(4.9, 9.9);
}

/*
This example of Math::Exp( double ) generates the following output.

Evaluate [e ^ ln(X) == ln(e ^ X) == X] with selected values for X:

      Math::Exp(Math::Log(0.1)) == 1.0000000000000001E-001
      Math::Log(Math::Exp(0.1)) == 1.0000000000000008E-001

      Math::Exp(Math::Log(1.2)) == 1.2000000000000000E+000
      Math::Log(Math::Exp(1.2)) == 1.2000000000000000E+000

      Math::Exp(Math::Log(4.9)) == 4.9000000000000012E+000
      Math::Log(Math::Exp(4.9)) == 4.9000000000000004E+000

      Math::Exp(Math::Log(9.9)) == 9.9000000000000004E+000
      Math::Log(Math::Exp(9.9)) == 9.9000000000000004E+000

Evaluate these identities with selected values for X and Y:
   (e ^ X) * (e ^ Y) == e ^ (X + Y)
   (e ^ X) ^ Y == e ^ (X * Y)
   X ^ Y == e ^ (Y * ln(X))

Math::Exp(0.1) * Math::Exp(1.2) == 3.6692966676192444E+000
           Math::Exp(0.1 + 1.2) == 3.6692966676192444E+000
 Math::Pow(Math::Exp(0.1), 1.2) == 1.1274968515793757E+000
           Math::Exp(0.1 * 1.2) == 1.1274968515793757E+000
            Math::Pow(0.1, 1.2) == 6.3095734448019331E-002
Math::Exp(1.2 * Math::Log(0.1)) == 6.3095734448019344E-002

Math::Exp(1.2) * Math::Exp(4.9) == 4.4585777008251705E+002
           Math::Exp(1.2 + 4.9) == 4.4585777008251716E+002
 Math::Pow(Math::Exp(1.2), 4.9) == 3.5780924170885260E+002
           Math::Exp(1.2 * 4.9) == 3.5780924170885277E+002
            Math::Pow(1.2, 4.9) == 2.4433636334442981E+000
Math::Exp(4.9 * Math::Log(1.2)) == 2.4433636334442981E+000

Math::Exp(4.9) * Math::Exp(9.9) == 2.6764450551890982E+006
           Math::Exp(4.9 + 9.9) == 2.6764450551891015E+006
 Math::Pow(Math::Exp(4.9), 9.9) == 1.1684908531676833E+021
           Math::Exp(4.9 * 9.9) == 1.1684908531676829E+021
            Math::Pow(4.9, 9.9) == 6.8067718210957060E+006
Math::Exp(9.9 * Math::Log(4.9)) == 6.8067718210956985E+006
*/

[JScript] No example is available for JScript. To view a Visual Basic, C#, or C++ example, click the Language Filter button Language Filter in the upper-left corner of the page.

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition, Windows XP Professional, Windows Server 2003 family, .NET Compact Framework, Common Language Infrastructure (CLI) Standard

See Also

Math Class | Math Members | System Namespace | E | Pow | Log

Did you find this helpful?
(1500 characters remaining)
Thank you for your feedback
Show:
© 2014 Microsoft. All rights reserved.