Gewusst wie: Verwenden von Arrays in C++/CLI

In diesem Artikel wird beschrieben, wie Arrays in C++/CLI verwendet.

Eindimensionale Arrays

Das folgende Beispiel zeigt, wie eindimensionale Arrays Verweis, Wert und systemeigene Zeigertypen erstellt.Es zeigt auch, wie ein eindimensionales Array aus einer Funktion zurückgibt und wie ein eindimensionales Array als Argument an eine Funktion übergeben wird.

// mcppv2_sdarrays.cpp
// compile with: /clr
using namespace System;

#define ARRAY_SIZE 2

value struct MyStruct {
   int m_i;
};

ref class MyClass {
public:
   int m_i;
};

struct MyNativeClass {
   int m_i;
};

// Returns a managed array of a reference type.
array<MyClass^>^ Test0() {
   int i;
   array< MyClass^ >^ local = gcnew array< MyClass^ >(ARRAY_SIZE);

   for (i = 0 ; i < ARRAY_SIZE ; i++) {
      local[i] = gcnew MyClass;
      local[i] -> m_i = i;
   }
   return local;
}


// Returns a managed array of Int32.
array<Int32>^ Test1() {
   int i;
   array< Int32 >^ local = gcnew array< Int32 >(ARRAY_SIZE);

   for (i = 0 ; i < ARRAY_SIZE ; i++)
      local[i] = i + 10;
   return local;
}


// Modifies an array.
void Test2(array< MyNativeClass * >^ local) {
   for (int i = 0 ; i < ARRAY_SIZE ; i++)
      local[i] -> m_i = local[i] -> m_i + 2;
}

int main() {
   int i;

   // Declares an array of user-defined reference types
   // and uses a function to initialize.
   array< MyClass^ >^ MyClass0;
   MyClass0 = Test0();

   for (i = 0 ; i < ARRAY_SIZE ; i++)
      Console::WriteLine("MyClass0[{0}] = {1}", i, MyClass0[i] -> m_i);
   Console::WriteLine();


   // Declares an array of value types and uses a function to initialize.
   array< Int32 >^ IntArray;
   IntArray = Test1();

   for (i = 0 ; i < ARRAY_SIZE ; i++)
      Console::WriteLine("IntArray[{0}] = {1}", i, IntArray[i]);
   Console::WriteLine();


   // Declares and initializes an array of user-defined 
   // reference types.
   array< MyClass^ >^ MyClass1 = gcnew array< MyClass^ >(ARRAY_SIZE);
   for (i = 0 ; i < ARRAY_SIZE ; i++) {
      MyClass1[i] = gcnew MyClass;
      MyClass1[i] -> m_i = i + 20;
   }

   for (i = 0 ; i < ARRAY_SIZE ; i++)
      Console::WriteLine("MyClass1[{0}] = {1}", i, MyClass1[i] -> m_i);
   Console::WriteLine();


   // Declares and initializes an array of pointers to a native type.
   array< MyNativeClass * >^ MyClass2 = gcnew array< 
      MyNativeClass * >(ARRAY_SIZE);
   for (i = 0 ; i < ARRAY_SIZE ; i++) {
      MyClass2[i] = new MyNativeClass();
      MyClass2[i] -> m_i = i + 30;
   }

   for (i = 0 ; i < ARRAY_SIZE ; i++)
      Console::WriteLine("MyClass2[{0}] = {1}", i, MyClass2[i]->m_i);
   Console::WriteLine();

   Test2(MyClass2);
   for (i = 0 ; i < ARRAY_SIZE ; i++)
      Console::WriteLine("MyClass2[{0}] = {1}", i, MyClass2[i]->m_i);
   Console::WriteLine();

   delete[] MyClass2[0];
   delete[] MyClass2[1];

   // Declares and initializes an array of user-defined value types.
   array< MyStruct >^ MyStruct1 = gcnew array< MyStruct >(ARRAY_SIZE);
   for (i = 0 ; i < ARRAY_SIZE ; i++) {
      MyStruct1[i] = MyStruct();
      MyStruct1[i].m_i = i + 40;
   }

   for (i = 0 ; i < ARRAY_SIZE ; i++)
      Console::WriteLine("MyStruct1[{0}] = {1}", i, MyStruct1[i].m_i);
}

Ausgabe

  

Das folgende Beispiel zeigt, wie vollständige Initialisierung auf eindimensionalen verwalteten Arrays ausführt.

// mcppv2_sdarrays_aggregate_init.cpp
// compile with: /clr
using namespace System;

ref class G {
public:
   G(int i) {}
};

value class V {
public:
   V(int i) {}
};

class N {
public:
   N(int i) {}
};

int main() {
   // Aggregate initialize a single-dimension managed array.
   array<String^>^ gc1 = gcnew array<String^>{"one", "two", "three"};
   array<String^>^ gc2 = {"one", "two", "three"};

   array<G^>^ gc3 = gcnew array<G^>{gcnew G(0), gcnew G(1), gcnew G(2)};
   array<G^>^ gc4 = {gcnew G(0), gcnew G(1), gcnew G(2)};   

   array<Int32>^ value1 = gcnew array<Int32>{0, 1, 2};
   array<Int32>^ value2 = {0, 1, 2};

   array<V>^ value3 = gcnew array<V>{V(0), V(1), V(2)};
   array<V>^ value4 = {V(0), V(1), V(2)};

   array<N*>^ native1 = gcnew array<N*>{new N(0), new N(1), new N(2)};
   array<N*>^ native2 = {new N(0), new N(1), new N(2)};
}

Ausgabe

  

Dieses Beispiel zeigt, wie vollständige Initialisierung auf einem MULTIDimensionsverwalteten array ausführt:

// mcppv2_mdarrays_aggregate_initialization.cpp
// compile with: /clr
using namespace System;

ref class G {
public:
   G(int i) {}
};

value class V {
public:
   V(int i) {}
};

class N {
public:
   N(int i) {}
};

int main() {
   // Aggregate initialize a multidimension managed array.
   array<String^, 2>^ gc1 = gcnew array<String^, 2>{ {"one", "two"}, 
       {"three", "four"} };
   array<String^, 2>^ gc2 = { {"one", "two"}, {"three", "four"} };

   array<G^, 2>^ gc3 = gcnew array<G^, 2>{ {gcnew G(0), gcnew G(1)}, 
       {gcnew G(2), gcnew G(3)} };
   array<G^, 2>^ gc4 = { {gcnew G(0), gcnew G(1)}, {gcnew G(2), gcnew G(3)} };

   array<Int32, 2>^ value1 = gcnew array<Int32, 2>{ {0, 1}, {2, 3} };
   array<Int32, 2>^ value2 = { {0, 1}, {2, 3} };

   array<V, 2>^ value3 = gcnew array<V, 2>{ {V(0), V(1)}, {V(2), V(3)} };
   array<V, 2>^ value4 = { {V(0), V(1)}, {V(2), V(3)} };

   array<N*, 2>^ native1 = gcnew array<N*, 2>{ {new N(0), new N(1)}, 
      {new N(2), new N(3)} };
   array<N*, 2>^ native2 = { {new N(0), new N(1)}, {new N(2), new N(3)} };
}

Verzweigte Arrays

In diesem Abschnitt wird erläutert, wie eindimensionale Arrays verwaltete Arrays Verweis, Wert und systemeigene Zeigertypen erstellt.Es zeigt auch, wie ein eindimensionales Array verwaltete Arrays von einer Funktion zurückgibt und wie ein eindimensionales Array als Argument an eine Funktion übergeben wird.

// mcppv2_array_of_arrays.cpp
// compile with: /clr
using namespace System;

#define ARRAY_SIZE 2

value struct MyStruct {
   int m_i;
};

ref class MyClass {
public:
   int m_i;
};

// Returns an array of managed arrays of a reference type.
array<array<MyClass^>^>^ Test0() {
   int size_of_array = 4;
   array<array<MyClass^>^>^ local = gcnew 
      array<array<MyClass^>^>(ARRAY_SIZE);

   for (int i = 0 ; i < ARRAY_SIZE ; i++, size_of_array += 4) {
      local[i] = gcnew array<MyClass^>(size_of_array);
      for (int k = 0; k < size_of_array ; k++) {
         local[i][k] = gcnew MyClass;
         local[i][k] -> m_i = i;
      }
   }

   return local;
}

// Returns a managed array of Int32.
array<array<Int32>^>^ Test1() {
   int i;
   array<array<Int32>^>^ local = gcnew array<array< Int32 >^>(ARRAY_SIZE);

   for (i = 0 ; i < ARRAY_SIZE ; i++) {
      local[i] = gcnew array< Int32 >(ARRAY_SIZE);
         for ( int j = 0 ; j < ARRAY_SIZE ; j++ ) 
            local[i][j] = i + 10;
   }
   return local;
}

int main() {
   int i, j;

   // Declares an array of user-defined reference types
   // and uses a function to initialize.
   array< array< MyClass^ >^ >^ MyClass0;
   MyClass0 = Test0();

   for (i = 0 ; i < ARRAY_SIZE ; i++)
      for ( j = 0 ; j < ARRAY_SIZE ; j++ ) 
         Console::WriteLine("MyClass0[{0}] = {1}", i, MyClass0[i][j] -> m_i);
   Console::WriteLine();


   // Declares an array of value types and uses a function to initialize.
   array< array< Int32 >^ >^ IntArray;
   IntArray = Test1();

   for (i = 0 ; i < ARRAY_SIZE ; i++)
      for (j = 0 ; j < ARRAY_SIZE ; j++)
      Console::WriteLine("IntArray[{0}] = {1}", i, IntArray[i][j]);
   Console::WriteLine();

   // Declares and initializes an array of user-defined value types.
   array< MyStruct >^ MyStruct1 = gcnew array< MyStruct >(ARRAY_SIZE);
   for (i = 0 ; i < ARRAY_SIZE ; i++) {
      MyStruct1[i] = MyStruct();
      MyStruct1[i].m_i = i + 40;
   }

   for (i = 0 ; i < ARRAY_SIZE ; i++)
      Console::WriteLine(MyStruct1[i].m_i);
}

Ausgabe

  

Das folgende Beispiel zeigt, wie vollständige Initialisierung mit verzweigten Arrays ausführt.

// mcppv2_array_of_arrays_aggregate_init.cpp
// compile with: /clr
using namespace System;
#define ARRAY_SIZE 2
int size_of_array = 4;
int count = 0;

ref class MyClass {
public:
   int m_i;
};

struct MyNativeClass {
   int m_i;
};

int main() {
   // Declares an array of user-defined reference types
   // and performs an aggregate initialization.
   array< array< MyClass^ >^ >^ MyClass0 = gcnew array<array<MyClass^>^> {
      gcnew array<MyClass^>{ gcnew MyClass(), gcnew MyClass() },
      gcnew array<MyClass^>{ gcnew MyClass(), gcnew MyClass() }
   };

   for ( int i = 0 ; i < ARRAY_SIZE ; i++, size_of_array += 4 )
      for ( int k = 0 ; k < ARRAY_SIZE ; k++ )
         MyClass0[i][k] -> m_i = i;

   for ( int i = 0 ; i < ARRAY_SIZE ; i++ )
      for ( int j = 0 ; j < ARRAY_SIZE ; j++ ) 
         Console::WriteLine("MyClass0[{0}] = {1}", i, MyClass0[i][j] -> m_i);
   Console::WriteLine();

   // Declares an array of value types and performs an aggregate initialization.
   array< array< Int32 >^ >^ IntArray = gcnew array<array< Int32 >^> {
      gcnew array<Int32>{1,2},
      gcnew array<Int32>{3,4,5}
   };

   for each ( array<int>^ outer in IntArray ) {
      Console::Write("["); 

      for each( int i in outer )
         Console::Write(" {0}", i);

      Console::Write(" ]");
      Console::WriteLine();
   }
   Console::WriteLine();

   // Declares and initializes an array of pointers to a native type.
   array<array< MyNativeClass * >^ > ^ MyClass2 = 
      gcnew array<array< MyNativeClass * > ^> {
         gcnew array<MyNativeClass *>{ new MyNativeClass(), new MyNativeClass() },
         gcnew array<MyNativeClass *>{ new MyNativeClass(), new MyNativeClass(), new MyNativeClass() }
      };

   for each ( array<MyNativeClass *> ^ outer in MyClass2 )
      for each( MyNativeClass* i in outer )
         i->m_i = count++;

   for each ( array<MyNativeClass *> ^ outer in MyClass2 ) {
      Console::Write("[");
      for each( MyNativeClass* i in outer )
         Console::Write(" {0}", i->m_i);
      Console::Write(" ]");
      Console::WriteLine();
   }
   Console::WriteLine();


   // Declares and initializes an array of two-dimensional arrays of strings.
   array<array<String ^,2> ^> ^gc3 = gcnew array<array<String ^,2> ^>{ 
      gcnew array<String ^>{ {"a","b"}, {"c", "d"}, {"e","f"} },
      gcnew array<String ^>{ {"g", "h"} } 
   };

   for each ( array<String^, 2> ^ outer in gc3 ){
      Console::Write("[");
      for each( String ^ i in outer )
         Console::Write(" {0}", i);
      Console::Write(" ]");
      Console::WriteLine();
   }
}

Ausgabe

  

Verwaltete Arrays als Vorlagentypparameter

Dieses Beispiel zeigt, wie ein verwaltetes Array als Parameter an eine Vorlage verwendet:

// mcppv2_template_type_params.cpp
// compile with: /clr
using namespace System;
template <class T> 
class TA {
public:
   array<array<T>^>^ f() {
      array<array<T>^>^ larr = gcnew array<array<T>^>(10);
      return larr;
   }
};

int main() {
   int retval = 0;
   TA<array<array<Int32>^>^>* ta1 = new TA<array<array<Int32>^>^>();
   array<array<array<array<Int32>^>^>^>^ larr = ta1->f();
   retval += larr->Length - 10;
   Console::WriteLine("Return Code: {0}", retval);
}

Ausgabe

  

Typdefinitionen für verwaltete Arrays

Dieses Beispiel zeigt, wie Typedef für ein verwaltetes Array macht:

// mcppv2_typedef_arrays.cpp
// compile with: /clr
using namespace System;
ref class G {};

typedef array<array<G^>^> jagged_array;

int main() {
   jagged_array ^ MyArr = gcnew jagged_array (10);
}

Sortierungsarrays

Anders als Standard-C++-Arrays werden verwaltete Arrays implizit von einer Arraybasisklasse berechnet, von der sie gemeinsames Verhalten erben.Ein Beispiel ist die Sort-Methode, die verwendet werden kann, um die Elemente in jedem Array zu sortieren.

Für Arrays, die grundlegende systeminterne Typen enthalten, können Sie die Sort-Methode aufrufen.Sie können die Sortierkriterien überschreiben, und dies ist erforderlich, wenn Sie für Arrays komplexe Typen sortieren möchten.In diesem Fall muss der Arrayelementtyp die IComparable::CompareTo-Methode implementieren.

// array_sort.cpp
// compile with: /clr
using namespace System;

int main() {
   array<int>^ a = { 5, 4, 1, 3, 2 };
   Array::Sort( a );
   for (int i=0; i < a->Length; i++)
      Console::Write("{0} ", a[i] );
}

Sortierungsarrays mithilfe benutzerdefinierter Kriterien

Um zu sortieren Arrays die grundlegende systeminterne Typen enthalten, rufen Sie einfach die Array::Sort-Methode auf.jedoch zum Sortieren Arrays, die komplexe Typen oder die standardmäßige Sortierkriterien zu überschreiben enthalten, überschreiben Sie die - Methode IComparable::CompareTo.

Im folgenden Beispiel wird eine Struktur, die Element genannt wird, von IComparable abgeleitet und geschrieben, um eine CompareTo-Methode bereitzustellen, die den Durchschnitt von zwei ganzen Zahlen als Sortierkriterium verwendet.

using namespace System;

value struct Element : public IComparable {
   int v1, v2;

   virtual int CompareTo(Object^ obj) {
      Element^ o = dynamic_cast<Element^>(obj);
      if (o) {
         int thisAverage = (v1 + v2) / 2;
         int thatAverage = (o->v1 + o->v2) / 2;
         if (thisAverage < thatAverage)
            return -1;
         else if (thisAverage > thatAverage)
            return 1;
         return 0;
         }
      else
         throw gcnew ArgumentException
      ("Object must be of type 'Element'");
   }
};

int main() {
   array<Element>^ a = gcnew array<Element>(10);
   Random^ r = gcnew Random;

   for (int i=0; i < a->Length; i++) {
      a[i].v1 = r->Next() % 100;
      a[i].v2 = r->Next() % 100;
   }

   Array::Sort( a );
   for (int i=0; i < a->Length; i++) {
      int v1 = a[i].v1;
      int v2 = a[i].v2;
      int v = (v1 + v2) / 2;
      Console::WriteLine("{0}  (({1}+{2})/2) ", v, v1, v2);
   }
}

Arraykovarianz

Sofern Verweisklasse D, die direkte oder indirekte Basisklasse B ist, ein Array vom Typ D kann auf eine Arrayvariable des Typs B zugewiesen werden.

// clr_array_covariance.cpp
// compile with: /clr
using namespace System;

int main() {
   // String derives from Object.
   array<Object^>^ oa = gcnew array<String^>(20);
}

Eine Zuweisung zu einem Arrayelement ist mit dem dynamischen Typ des Arrays Zuweisung-kompatibel.Eine Zuweisung zu einem Arrayelement, das einen nicht kompatiblen Typ hat, bewirkt System::ArrayTypeMismatchException ausgelöst.

Arraykovarianz gilt nicht für Arrays Wertklassentyp zu.Beispielsweise können Arrays Int32 nicht zu Object^-Arrays konvertiert werden, nicht einmal mit Boxing verwendet.

// clr_array_covariance2.cpp
// compile with: /clr
using namespace System;

ref struct Base { int i; };
ref struct Derived  : Base {};
ref struct Derived2 : Base {};
ref struct Derived3 : Derived {};
ref struct Other { short s; };

int main() {
   // Derived* d[] = new Derived*[100];
   array<Derived^> ^ d = gcnew array<Derived^>(100);

   // ok by array covariance
   array<Base ^> ^  b = d;

   // invalid
   // b[0] = new Other;

   // error (runtime exception)
   // b[1] = gcnew Derived2;

   // error (runtime exception),
   // must be "at least" a Derived.
   // b[0] = gcnew Base;

   b[1] = gcnew Derived;
   b[0] = gcnew Derived3;
}

Siehe auch

Referenz

Array (Visual C++)